Skip to main content

llama-index packs agent_search_retriever integration

Project description

Agent-Search Retrieval Pack

This LlamaPack creates a custom retriever that uses the agent-search API for retrieving general content indexed from the internet.

This framework facilitates seamless integration with the AgentSearch dataset (terabytes of indexed data!) or hosted search APIs (e.g. Search Engines).

During query-time, the user passes in the query string, search provider (bing, agent-search), and relevant nodes are retrieved from the hosted dataset.

To learn more, please refer to the documentation here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack AgentSearchRetrieverPack --download-dir ./agent_search_pack

You can then inspect the files at ./agent_search_pack and use them as a template for your own project!

Code Usage

You can download the pack to a the ./agent_search_pack directory:

# Optionally set the API key in the env
# import os
# os.environ["SCIPHI_API_KEY"] = "..."

from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
AgentSearchRetrieverPack = download_llama_pack(
    "AgentSearchRetrieverPack", "./agent_search_pack"
)

agent_search_pack = AgentSearchRetrieverPack(
    api_key="...", similarity_top_k=4, search_provider="agent-search"
)

# use the retriever directly
retriever = agent_search_pack.retriever
source_nodes = retriever.retrieve("query str")

# uses the agent-search retriever within a llama-index query engine!
query_engine = RetrieverQueryEngine.from_args(retriever)
response = query_engine.query("query str")

The run() function is a light wrapper around retriever.retrieve().

source_nodes = agent_search_pack.run("What can you tell me about LLMs?")

print(source_nodes)

See the notebook on llama-hub for a full example.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_agent_search_retriever-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_agent_search_retriever-0.3.0.tar.gz
Algorithm Hash digest
SHA256 9d1cfc867fdb1ca351116661ed1df28bb5509e30522031fd2f21e2bd4445a300
MD5 9c51ea839de93f6a0f7ae92cd4867820
BLAKE2b-256 f1f916f75b425f9c12fb15e264cfaa1504c14a1644e5073a7fab8e486885da96

See more details on using hashes here.

File details

Details for the file llama_index_packs_agent_search_retriever-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_agent_search_retriever-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 802fe6caf12ccaf511b15348b7a29571a4d030951b25d486e43e508d16ce423f
MD5 d75c6c07413ec773ef71c4e4a8c2852e
BLAKE2b-256 d65d148d039d610e39f4c41808341c9e064f13088378dbb0dc073411743d24ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page