Skip to main content

llama-index packs agent_search_retriever integration

Project description

Agent-Search Retrieval Pack

This LlamaPack creates a custom retriever that uses the agent-search API for retrieving general content indexed from the internet.

This framework facilitates seamless integration with the AgentSearch dataset (terabytes of indexed data!) or hosted search APIs (e.g. Search Engines).

During query-time, the user passes in the query string, search provider (bing, agent-search), and relevant nodes are retrieved from the hosted dataset.

To learn more, please refer to the documentation here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack AgentSearchRetrieverPack --download-dir ./agent_search_pack

You can then inspect the files at ./agent_search_pack and use them as a template for your own project!

Code Usage

You can download the pack to a the ./agent_search_pack directory:

# Optionally set the API key in the env
# import os
# os.environ["SCIPHI_API_KEY"] = "..."

from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
AgentSearchRetrieverPack = download_llama_pack(
    "AgentSearchRetrieverPack", "./agent_search_pack"
)

agent_search_pack = AgentSearchRetrieverPack(
    api_key="...", similarity_top_k=4, search_provider="agent-search"
)

# use the retriever directly
retriever = agent_search_pack.retriever
source_nodes = retriever.retrieve("query str")

# uses the agent-search retriever within a llama-index query engine!
query_engine = RetrieverQueryEngine.from_args(retriever)
response = query_engine.query("query str")

The run() function is a light wrapper around retriever.retrieve().

source_nodes = agent_search_pack.run("What can you tell me about LLMs?")

print(source_nodes)

See the notebook on llama-hub for a full example.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_agent_search_retriever-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_agent_search_retriever-0.2.0.tar.gz
Algorithm Hash digest
SHA256 6d4ce4d1ea41425e8ee42b9face33e3c554051a3929018e37a29c275c9ae3e5b
MD5 e7cc1e056d17af3cee2b1f6950a3fe2c
BLAKE2b-256 51b05caddff37e58b27bcda9275fccb4c75628893b1d4858813ee7cd767c3af6

See more details on using hashes here.

File details

Details for the file llama_index_packs_agent_search_retriever-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_agent_search_retriever-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 52a1e8604ac0b23c30277150a2b09859de487a0fb4529bc4f5d10e6557bb3b98
MD5 74737029aad424f57749e1d0e0726603
BLAKE2b-256 ebd254d6d081cc864e1bc9dbb0b8f2d23030131954f52190aebee39d93948052

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page