Skip to main content

llama-index packs agents llm compiler

Project description

LLMCompiler Agent Pack

This LlamaPack implements the LLMCompiler agent paper.

A lot of code came from the source repo, we repurposed with LlamaIndex abstractions. All credits to the original authors for a great work!

A full notebook guide can be found here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack LLMCompilerAgentPack --download-dir ./llm_compiler_agent_pack

You can then inspect the files at ./llm_compiler_agent_pack and use them as a template for your own project!

Code Usage

You can download the pack to a directory. NOTE: You must specify skip_load=True - the pack contains multiple files, which makes it hard to load directly.

We will show you how to import the agent from these files!

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
download_llama_pack("LLMCompilerAgentPack", "./llm_compiler_agent_pack")

From here, you can use the pack. You can import the relevant modules from the download folder (in the example below we assume it's a relative import or the directory has been added to your system path).

# setup pack arguments

from llama_index.core.agent import AgentRunner
from llm_compiler_agent_pack.step import LLMCompilerAgentWorker

agent_worker = LLMCompilerAgentWorker.from_tools(
    tools, llm=llm, verbose=True, callback_manager=callback_manager
)
agent = AgentRunner(agent_worker, callback_manager=callback_manager)

# start using the agent
response = agent.chat("What is (121 * 3) + 42?")

You can also use/initialize the pack directly.

from llm_compiler_agent_pack.base import LLMCompilerAgentPack

agent_pack = LLMCompilerAgentPack(tools, llm=llm)

The run() function is a light wrapper around agent.chat().

response = pack.run("Tell me about the population of Boston")

You can also directly get modules from the pack.

# use the agent
agent = pack.agent
response = agent.chat("task")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_agents_llm_compiler-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_agents_llm_compiler-0.2.0.tar.gz
Algorithm Hash digest
SHA256 ceab16ef10b8ff05196bc625e77d8c1597bff256b5a480504ac53f402cb11d9c
MD5 c599afcbf79b15402e534ef70d6fb52c
BLAKE2b-256 92e098fb4ddecaa81f4a74e5bfecb66a432e3f5b1def8e300cc85d366e6aabe4

See more details on using hashes here.

File details

Details for the file llama_index_packs_agents_llm_compiler-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_agents_llm_compiler-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8865dcf2e5db8272dc4f8744021c33666b15b667672e427337e8881326050510
MD5 abcfc834d513c644c9dcd2797ea2c05a
BLAKE2b-256 bc447270771784eabbe61f668216c674b2f1aa017b13ebf51534a3fcf05eb46b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page