Skip to main content

llama-index packs amazon_product_extraction integration

Project description

Amazon Product Extraction Pack

This LlamaPack provides an example of our Amazon product extraction pack.

It loads in a website URL, screenshots the page. Then we use OpenAI GPT-4V + prompt engineering to extract the screenshot into a structured JSON output.

Check out the notebook here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack AmazonProductExtractionPack --download-dir ./amazon_product_extraction_pack

You can then inspect the files at ./amazon_product_extraction_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./amazon_product_extraction_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
AmazonProductExtractionPack = download_llama_pack(
    "AmazonProductExtractionPack", "./amazon_product_extraction_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./amazon_product_extraction_pack.

Then, you can set up the pack like so:

# create the pack
# get documents from any data loader
amazon_product_extraction_pack = SentenceWindowRetrieverPack(
    amazon_product_page,
)

The run() function is a light wrapper around program().

response = amazon_product_extraction_pack.run()
display(response.dict())

You can also use modules individually.

# get pydantic program
program = amazon_product_extraction_pack.openai_program

# get multi-modal LLM
mm_llm = amazon_product_extraction_pack.openai_mm_llm

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_amazon_product_extraction-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_amazon_product_extraction-0.2.0.tar.gz
Algorithm Hash digest
SHA256 b2283e1bea314210789d0075eba416c99da651f1819a1e5b7f693c4c7f2fe220
MD5 7e19a80a3c7591ef9c50cf6b0a4cd333
BLAKE2b-256 de24d80880d16be2007ecfb8594020fe28a69b85d85773f9fd64e4ed95caa919

See more details on using hashes here.

File details

Details for the file llama_index_packs_amazon_product_extraction-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_amazon_product_extraction-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 63e008cc2060d7f0e6c6f8f718b608f19a8bef2297f24f34a32740d4dc71536f
MD5 71d2f59772b6f471b75c44bfd4038c37
BLAKE2b-256 41609676d835f37f77dcac012e280f9cb957d49f2135b743f2d8a0d55247c9e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page