Skip to main content

llama-index packs arize_phoenix_query_engine integration

Project description

Arize-Phoenix LlamaPack

This LlamaPack instruments your LlamaIndex app for LLM tracing with Phoenix, an open-source LLM observability library from Arize AI.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack ArizePhoenixQueryEnginePack --download-dir ./arize_pack

You can then inspect the files at ./arize_pack and use them as a template for your own project!

Code Usage

You can download the pack to a the ./arize_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
ArizePhoenixQueryEnginePack = download_llama_pack(
    "ArizePhoenixQueryEnginePack", "./arize_pack"
)

You can then inspect the files at ./arize_pack or continue on to use the module.

import os

from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.web import SimpleWebPageReader
from tqdm.auto import tqdm

Configure your OpenAI API key.

os.environ["OPENAI_API_KEY"] = "copy-your-openai-api-key-here"

Parse your documents into a list of nodes and pass to your LlamaPack. In this example, use nodes from a Paul Graham essay as input.

documents = SimpleWebPageReader().load_data(
    [
        "https://raw.githubusercontent.com/jerryjliu/llama_index/adb054429f642cc7bbfcb66d4c232e072325eeab/examples/paul_graham_essay/data/paul_graham_essay.txt"
    ]
)
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(documents)
phoenix_pack = ArizePhoenixQueryEnginePack(nodes=nodes)

Run a set of queries via the pack's run method, which delegates to the underlying query engine.

queries = [
    "What did Paul Graham do growing up?",
    "When and how did Paul Graham's mother die?",
    "What, in Paul Graham's opinion, is the most distinctive thing about YC?",
    "When and how did Paul Graham meet Jessica Livingston?",
    "What is Bel, and when and where was it written?",
]
for query in tqdm(queries):
    print("Query")
    print("=====")
    print(query)
    print()
    response = phoenix_pack.run(query)
    print("Response")
    print("========")
    print(response)
    print()

View your trace data in the Phoenix UI.

phoenix_session_url = phoenix_pack.get_modules()["session_url"]
print(f"Open the Phoenix UI to view your trace data: {phoenix_session_url}")

You can access the internals of the LlamaPack, including your Phoenix session and your query engine, via the get_modules method.

phoenix_pack.get_modules()

Check out the Phoenix documentation for more information!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_arize_phoenix_query_engine-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_arize_phoenix_query_engine-0.3.0.tar.gz
Algorithm Hash digest
SHA256 dd0ad4048f2084e6508e9bd6243fe117de2bab39e91d019921f8f8bdcc94a78f
MD5 c9b2c41a97a01a6c129db6596317da4e
BLAKE2b-256 df7229e77cc759b632e7863e4ff4cc7cb662865491a33ee89177a2cb1290aa55

See more details on using hashes here.

File details

Details for the file llama_index_packs_arize_phoenix_query_engine-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_arize_phoenix_query_engine-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9b06a278526d5be09cb4c2f4fd2bb3a3460aa82fea4ee141ed1d20f539836052
MD5 8070571c48c21d82abe3e66766af2b91
BLAKE2b-256 134b5b9264f2fbd7e4deee6531a73a167d1878b5b0305e13a2433e3c3f8e8e1a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page