Skip to main content

llama-index packs chroma_autoretrieval integration

Project description

Chroma AutoRetrieval Pack

This LlamaPack inserts your data into chroma and instantiates an auto-retriever, which will use the LLM at runtime to set metadata filtering, top-k, and query string.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack ChromaAutoretrievalPack --download-dir ./chroma_pack

You can then inspect the files at ./chroma_pack and use them as a template for your own project!

Code Usage

You can download the pack to a the ./chroma_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
ChromaAutoretrievalPack = download_llama_pack(
    "ChromaAutoretrievalPack", "./chroma_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./chroma_pack.

Then, you can set up the pack like so:

# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import chromadb

client = chromadb.EphemeralClient()

nodes = [...]

# create the pack
chroma_pack = ChromaAutoretrievalPack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)

The run() function is a light wrapper around query_engine.query().

response = chroma_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the retriever
retriever = chroma_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = chroma_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_chroma_autoretrieval-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_chroma_autoretrieval-0.3.0.tar.gz
Algorithm Hash digest
SHA256 1929ca051fc02d80b727b7d14be2fee6637cc10c752fba49bea62acaeedd587e
MD5 896c5f3609dfb9297e9078f15d84cc2d
BLAKE2b-256 1cec00b4dfeb60e6f9bfca858233e2593044f3bf73b62137ce202eecec9824a0

See more details on using hashes here.

File details

Details for the file llama_index_packs_chroma_autoretrieval-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_chroma_autoretrieval-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e79f09f2aa475fa73c2ded206a6de71be0d35e1ed79b203a70614f04cf55a5b3
MD5 23d21d78b9bfd0495f3f11c3e3738f95
BLAKE2b-256 d66f7ed6d81d659d06f7a830d46ce77378630c65d754bc0e56999f008616134b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page