Skip to main content

llama-index packs chroma_autoretrieval integration

Project description

Chroma AutoRetrieval Pack

This LlamaPack inserts your data into chroma and instantiates an auto-retriever, which will use the LLM at runtime to set metadata filtering, top-k, and query string.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack ChromaAutoretrievalPack --download-dir ./chroma_pack

You can then inspect the files at ./chroma_pack and use them as a template for your own project!

Code Usage

You can download the pack to a the ./chroma_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
ChromaAutoretrievalPack = download_llama_pack(
    "ChromaAutoretrievalPack", "./chroma_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./chroma_pack.

Then, you can set up the pack like so:

# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import chromadb

client = chromadb.EphemeralClient()

nodes = [...]

# create the pack
chroma_pack = ChromaAutoretrievalPack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)

The run() function is a light wrapper around query_engine.query().

response = chroma_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the retriever
retriever = chroma_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = chroma_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_chroma_autoretrieval-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_chroma_autoretrieval-0.2.0.tar.gz
Algorithm Hash digest
SHA256 ebbd523499173712095e6658bda3f3a904da517d38e7f56a35fe31b9dfd515c2
MD5 2c2721d1cf0a48b3575faed146966cb2
BLAKE2b-256 f02681ea49c707cfee63feaf534ad0536e67e67dce832401ca50f89fe9f2524e

See more details on using hashes here.

File details

Details for the file llama_index_packs_chroma_autoretrieval-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_chroma_autoretrieval-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fc40e905706f57b4c203b56335fdf5385f532a241fe4bbcd29486db70a0e0a57
MD5 8755aff5d3e0e9befae095bb6d70838e
BLAKE2b-256 b9e8e1255d8ca08ebc3c810ee2aff54c47d7cf3151e9a1a228b5b4983806afb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page