Skip to main content

llama-index packs deeplake_deepmemory_retriever integration

Project description

DeepLake DeepMemory Pack

This LlamaPack inserts your data into deeplake and instantiates a deepmemory retriever, which will use deepmemory during runtime to increase RAG's retrieval accuracy (recall).

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack DeepMemoryRetrieverPack --download-dir ./deepmemory_pack

You can then inspect the files at ./deepmemory_pack and use them as a template for your own project!

Code Usage

You can download the pack to a ./deepmemory_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
DeepMemoryRetriever = download_llama_pack(
    "DeepMemoryRetrieverPack", "./deepmemory_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./deepmemory_pack.

Then, you can set up the pack like so:

# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

nodes = [...]

# create the pack
deepmemory_pack = DeepMemoryRetriever(
    dataset_path="llama_index",
    overwrite=False,
    nodes=nodes,
)

The run() function is a light wrapper around query_engine.query().

response = deepmemory_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the retriever
retriever = deepmemory_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = deepmemory_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_deeplake_deepmemory_retriever-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_deeplake_deepmemory_retriever-0.3.0.tar.gz
Algorithm Hash digest
SHA256 a76728e78b28b9cd19fe6d276e40ec650cc3afe4be96ceed623f2a876f96914a
MD5 d97253be0fd6b93cfa22312d0909b4a0
BLAKE2b-256 0181aea8b5c12b07d3d1ce70ca211273147f2dc97f3ed725f17b82747d3b4857

See more details on using hashes here.

File details

Details for the file llama_index_packs_deeplake_deepmemory_retriever-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_deeplake_deepmemory_retriever-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2e8b4c2ea463d5cecbf8c740c9e3c47ac6633027796b3f55a05cb1100c1200da
MD5 646348f836d6f3515bf3b318a60a544b
BLAKE2b-256 751832b6fed8e3b2d9111c7ae7a67b78c8adcf5ad8518a6ac0940d9c8e99cbfe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page