Skip to main content

llama-index packs deeplake_multimodal_retrieval integration

Project description

DeepLake DeepMemory Pack

This LlamaPack inserts your multimodal data (texts, images) into deeplake and instantiates an deeplake retriever, which will use clip for embedding images and GPT4-V during runtime.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack DeepLakeMultimodalRetrieverPack --download-dir ./deeplake_multimodal_pack

You can then inspect the files at ./deeplake_multimodal_pack and use them as a template for your own project!

Code Usage

You can download the pack to a ./deeplake_multimodal_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
DeepLakeMultimodalRetriever = download_llama_pack(
    "DeepLakeMultimodalRetrieverPack", "./deeplake_multimodal_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./deepmemory_pack.

Then, you can set up the pack like so:

# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

# collection of image and text nodes
nodes = [...]

# create the pack
deeplake_pack = DeepLakeMultimodalRetriever(
    nodes=nodes, dataset_path="llama_index", overwrite=False
)

The run() function is a light wrapper around SimpleMultiModalQueryEngine.

response = deeplake_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the retriever
retriever = deeplake_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = deeplake_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_deeplake_multimodal_retrieval-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_deeplake_multimodal_retrieval-0.2.0.tar.gz
Algorithm Hash digest
SHA256 d2c45bc5965a07ce0c66cb063efc34623527e94cb9cc1a95378b18e90ff57784
MD5 f1971f2048dc62f0a485d337c9877b3f
BLAKE2b-256 328dc0297a92e8bd7a209354d54d145d04ea4f2feaabcfddcd0ef68556f77f36

See more details on using hashes here.

File details

Details for the file llama_index_packs_deeplake_multimodal_retrieval-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_deeplake_multimodal_retrieval-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ef85321b9eeb6ce989b950c03c80a9f5091dd18eae3a27c952bb6d2b52d1c9c5
MD5 63d5611b38e40bb597855cc1c873198d
BLAKE2b-256 021f37affa0a486067986bd16bd8cd232239887d67242e5d498d96c2ad32868e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page