Skip to main content

llama-index packs llama_dataset_metadata integration

Project description

LlamaDataset Metadata Pack

As part of the LlamaDataset submission package into llamahub, two metadata files are required, namely: card.json and README.md. This pack creates these two files and saves them to disk to help expedite the submission process.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack LlamaDatasetMetadataPack --download-dir ./llama_dataset_metadata_pack

You can then inspect the files at ./llama_dataset_metadata_pack and use them as a template for your own project!

Code Usage

You can download the pack to the ./llama_dataset_metadata_pack directory through python code as well. The sample script below demonstrates how to construct LlamaDatasetMetadataPack using a LabelledRagDataset downloaded from llama-hub and a simple RAG pipeline built off of its source documents.

from llama_index.core.llama_pack import download_llama_pack

# Download and install dependencies
LlamaDatasetMetadataPack = download_llama_pack(
    "LlamaDatasetMetadataPack", "./llama_dataset_metadata_pack"
)

# construction requires a query_engine, a rag_dataset, and optionally a judge_llm
llama_dataset_metadata_pack = LlamaDatasetMetadataPack()

# create and save `card.json` and `README.md` to disk
dataset_description = (
    "A labelled RAG dataset based off an essay by Paul Graham, consisting of "
    "queries, reference answers, and reference contexts."
)

llama_dataset_metadata_pack.run(
    name="Paul Graham Essay Dataset",
    description=dataset_description,
    rag_dataset=rag_dataset,  # defined earlier not shown here
    index=index,  # defined earlier not shown here
    benchmark_df=benchmark_df,  # defined earlier not shown here
    baseline_name="llamaindex",
)

NOTE: this pack should be used only after performing a RAG evaluation (i.e., by using RagEvaluatorPack on a LabelledRagDataset). In the code snippet above, index, rag_dataset, and benchmark_df are all objects that you'd expect to have only after performing the RAG evaluation as mention in the previous sentence.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_llama_dataset_metadata-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_llama_dataset_metadata-0.3.0.tar.gz
Algorithm Hash digest
SHA256 80aec818488cff0792c6a1808e710715d5a0a484edb59b2297490ad8fc1a708f
MD5 527c295118952a3a29a728bc91897e8c
BLAKE2b-256 96205e46995715657e292a8e233c0db91d939ae5099243c7071d575a5ed9c86b

See more details on using hashes here.

File details

Details for the file llama_index_packs_llama_dataset_metadata-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_llama_dataset_metadata-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4aac5fa2ceed75a6782437c7d138ae98c4867aaef2b3be34c468590d2c1e48f4
MD5 9d049ee34bbae675dc20e972479f52fa
BLAKE2b-256 8806aa3f0728e9c3028b320ff4f5b0649849b543064273051719c3b95696dcb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page