Skip to main content

llama-index packs llama_dataset_metadata integration

Project description

LlamaDataset Metadata Pack

As part of the LlamaDataset submission package into llamahub, two metadata files are required, namely: card.json and README.md. This pack creates these two files and saves them to disk to help expedite the submission process.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack LlamaDatasetMetadataPack --download-dir ./llama_dataset_metadata_pack

You can then inspect the files at ./llama_dataset_metadata_pack and use them as a template for your own project!

Code Usage

You can download the pack to the ./llama_dataset_metadata_pack directory through python code as well. The sample script below demonstrates how to construct LlamaDatasetMetadataPack using a LabelledRagDataset downloaded from llama-hub and a simple RAG pipeline built off of its source documents.

from llama_index.core.llama_pack import download_llama_pack

# Download and install dependencies
LlamaDatasetMetadataPack = download_llama_pack(
    "LlamaDatasetMetadataPack", "./llama_dataset_metadata_pack"
)

# construction requires a query_engine, a rag_dataset, and optionally a judge_llm
llama_dataset_metadata_pack = LlamaDatasetMetadataPack()

# create and save `card.json` and `README.md` to disk
dataset_description = (
    "A labelled RAG dataset based off an essay by Paul Graham, consisting of "
    "queries, reference answers, and reference contexts."
)

llama_dataset_metadata_pack.run(
    name="Paul Graham Essay Dataset",
    description=dataset_description,
    rag_dataset=rag_dataset,  # defined earlier not shown here
    index=index,  # defined earlier not shown here
    benchmark_df=benchmark_df,  # defined earlier not shown here
    baseline_name="llamaindex",
)

NOTE: this pack should be used only after performing a RAG evaluation (i.e., by using RagEvaluatorPack on a LabelledRagDataset). In the code snippet above, index, rag_dataset, and benchmark_df are all objects that you'd expect to have only after perfoming the RAG evaluation as mention in the previous sentence.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_llama_dataset_metadata-0.0.1.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_llama_dataset_metadata-0.0.1.tar.gz
Algorithm Hash digest
SHA256 8ef9b69fc84548ee9c94178d1ec045d064fe547e8c3349db4fbc1e39cc6aed6d
MD5 0cf7603e986182620e2534cfbeea3701
BLAKE2b-256 13cd51cae816d56a35ca6ceea26ef0fc1af28d3393879f509d1b5081b74fb6cc

See more details on using hashes here.

File details

Details for the file llama_index_packs_llama_dataset_metadata-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_llama_dataset_metadata-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 72fc61defbc0ca731203a33c8532cb2903c42c395700577d9075a3f2943d5a08
MD5 947bc614a76de42548fbbc3f8978ddad
BLAKE2b-256 e5333e65e9758b7fc044e954e3e57ae2755f5abf41761e8a5d46f3807d48812a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page