Skip to main content

llama-index packs llama_dataset_metadata integration

Project description

LlamaDataset Metadata Pack

As part of the LlamaDataset submission package into llamahub, two metadata files are required, namely: card.json and README.md. This pack creates these two files and saves them to disk to help expedite the submission process.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack LlamaDatasetMetadataPack --download-dir ./llama_dataset_metadata_pack

You can then inspect the files at ./llama_dataset_metadata_pack and use them as a template for your own project!

Code Usage

You can download the pack to the ./llama_dataset_metadata_pack directory through python code as well. The sample script below demonstrates how to construct LlamaDatasetMetadataPack using a LabelledRagDataset downloaded from llama-hub and a simple RAG pipeline built off of its source documents.

from llama_index.core.llama_pack import download_llama_pack

# Download and install dependencies
LlamaDatasetMetadataPack = download_llama_pack(
    "LlamaDatasetMetadataPack", "./llama_dataset_metadata_pack"
)

# construction requires a query_engine, a rag_dataset, and optionally a judge_llm
llama_dataset_metadata_pack = LlamaDatasetMetadataPack()

# create and save `card.json` and `README.md` to disk
dataset_description = (
    "A labelled RAG dataset based off an essay by Paul Graham, consisting of "
    "queries, reference answers, and reference contexts."
)

llama_dataset_metadata_pack.run(
    name="Paul Graham Essay Dataset",
    description=dataset_description,
    rag_dataset=rag_dataset,  # defined earlier not shown here
    index=index,  # defined earlier not shown here
    benchmark_df=benchmark_df,  # defined earlier not shown here
    baseline_name="llamaindex",
)

NOTE: this pack should be used only after performing a RAG evaluation (i.e., by using RagEvaluatorPack on a LabelledRagDataset). In the code snippet above, index, rag_dataset, and benchmark_df are all objects that you'd expect to have only after performing the RAG evaluation as mention in the previous sentence.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_llama_dataset_metadata-0.1.3.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_llama_dataset_metadata-0.1.3.tar.gz
Algorithm Hash digest
SHA256 740f255d1b5bf523088a5d6b296d1c60b755cf19ebb9905e0cbff756284e832d
MD5 88bb07060496690fc080ffed99c18569
BLAKE2b-256 e28ac15b931cea4bfe64b054a137e2a27465e241d786db38419734a5ce57f5ca

See more details on using hashes here.

File details

Details for the file llama_index_packs_llama_dataset_metadata-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_llama_dataset_metadata-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 4bfdfa54d9c2d91cedaad9d33f2b8190a15552d5f2c7d813902cfc32bd8b0bec
MD5 01d450df4fd0ffe0c7d3fb69cc7b8084
BLAKE2b-256 1c8ad73e44969332969f5e8bf281e25e21febeb1b6e842fbea077414a55d230b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page