Skip to main content

llama-index packs llama_dataset_metadata integration

Project description

LlamaDataset Metadata Pack

As part of the LlamaDataset submission package into llamahub, two metadata files are required, namely: card.json and README.md. This pack creates these two files and saves them to disk to help expedite the submission process.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack LlamaDatasetMetadataPack --download-dir ./llama_dataset_metadata_pack

You can then inspect the files at ./llama_dataset_metadata_pack and use them as a template for your own project!

Code Usage

You can download the pack to the ./llama_dataset_metadata_pack directory through python code as well. The sample script below demonstrates how to construct LlamaDatasetMetadataPack using a LabelledRagDataset downloaded from llama-hub and a simple RAG pipeline built off of its source documents.

from llama_index.core.llama_pack import download_llama_pack

# Download and install dependencies
LlamaDatasetMetadataPack = download_llama_pack(
    "LlamaDatasetMetadataPack", "./llama_dataset_metadata_pack"
)

# construction requires a query_engine, a rag_dataset, and optionally a judge_llm
llama_dataset_metadata_pack = LlamaDatasetMetadataPack()

# create and save `card.json` and `README.md` to disk
dataset_description = (
    "A labelled RAG dataset based off an essay by Paul Graham, consisting of "
    "queries, reference answers, and reference contexts."
)

llama_dataset_metadata_pack.run(
    name="Paul Graham Essay Dataset",
    description=dataset_description,
    rag_dataset=rag_dataset,  # defined earlier not shown here
    index=index,  # defined earlier not shown here
    benchmark_df=benchmark_df,  # defined earlier not shown here
    baseline_name="llamaindex",
)

NOTE: this pack should be used only after performing a RAG evaluation (i.e., by using RagEvaluatorPack on a LabelledRagDataset). In the code snippet above, index, rag_dataset, and benchmark_df are all objects that you'd expect to have only after performing the RAG evaluation as mention in the previous sentence.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_llama_dataset_metadata-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_llama_dataset_metadata-0.2.0.tar.gz
Algorithm Hash digest
SHA256 ad07af07a8024a757e1955bee1ba7f7fea30a4c4e7124ba928bf2bc53c3d7502
MD5 cb1ae54902302ba10f7574725610cf7a
BLAKE2b-256 a6ead6f1bf776116f36cd885c3a7a37e6b7ff59fc186e71b9489b05e6e46043f

See more details on using hashes here.

File details

Details for the file llama_index_packs_llama_dataset_metadata-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_llama_dataset_metadata-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a3a4fd1f1a5c990e0283728aead996a6b593b3e0d45bea150a6d4c1b69c5ee40
MD5 7e123bc6f7d1be92652f4ce20794f613
BLAKE2b-256 b8c3930e867d912d46f065c8f455f39b5ef8e36ad44561e4c0d5939d48ca3e4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page