llama-index packs llama_dataset_metadata integration
Project description
LlamaDataset Metadata Pack
As part of the LlamaDataset
submission package into llamahub,
two metadata files are required, namely: card.json
and README.md
. This pack
creates these two files and saves them to disk to help expedite the submission
process.
CLI Usage
You can download llamapacks directly using llamaindex-cli
, which comes installed with the llama-index
python package:
llamaindex-cli download-llamapack LlamaDatasetMetadataPack --download-dir ./llama_dataset_metadata_pack
You can then inspect the files at ./llama_dataset_metadata_pack
and use them as a template for your own project!
Code Usage
You can download the pack to the ./llama_dataset_metadata_pack
directory through python
code as well. The sample script below demonstrates how to construct LlamaDatasetMetadataPack
using a LabelledRagDataset
downloaded from llama-hub
and a simple RAG pipeline
built off of its source documents.
from llama_index.core.llama_pack import download_llama_pack
# Download and install dependencies
LlamaDatasetMetadataPack = download_llama_pack(
"LlamaDatasetMetadataPack", "./llama_dataset_metadata_pack"
)
# construction requires a query_engine, a rag_dataset, and optionally a judge_llm
llama_dataset_metadata_pack = LlamaDatasetMetadataPack()
# create and save `card.json` and `README.md` to disk
dataset_description = (
"A labelled RAG dataset based off an essay by Paul Graham, consisting of "
"queries, reference answers, and reference contexts."
)
llama_dataset_metadata_pack.run(
name="Paul Graham Essay Dataset",
description=dataset_description,
rag_dataset=rag_dataset, # defined earlier not shown here
index=index, # defined earlier not shown here
benchmark_df=benchmark_df, # defined earlier not shown here
baseline_name="llamaindex",
)
NOTE: this pack should be used only after performing a RAG evaluation (i.e., by
using RagEvaluatorPack
on a LabelledRagDataset
). In the code snippet above,
index
, rag_dataset
, and benchmark_df
are all objects that you'd expect to
have only after performing the RAG evaluation as mention in the previous sentence.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llama_index_packs_llama_dataset_metadata-0.3.0.tar.gz
.
File metadata
- Download URL: llama_index_packs_llama_dataset_metadata-0.3.0.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80aec818488cff0792c6a1808e710715d5a0a484edb59b2297490ad8fc1a708f |
|
MD5 | 527c295118952a3a29a728bc91897e8c |
|
BLAKE2b-256 | 96205e46995715657e292a8e233c0db91d939ae5099243c7071d575a5ed9c86b |
File details
Details for the file llama_index_packs_llama_dataset_metadata-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: llama_index_packs_llama_dataset_metadata-0.3.0-py3-none-any.whl
- Upload date:
- Size: 4.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4aac5fa2ceed75a6782437c7d138ae98c4867aaef2b3be34c468590d2c1e48f4 |
|
MD5 | 9d049ee34bbae675dc20e972479f52fa |
|
BLAKE2b-256 | 8806aa3f0728e9c3028b320ff4f5b0649849b543064273051719c3b95696dcb9 |