Skip to main content

llama-index packs nebulagraph_query_engine integration

Project description

NebulaGraph Query Engine Pack

This LlamaPack creates a NebulaGraph query engine, and executes its query function. This pack offers the option of creating multiple types of query engines, namely:

  • Knowledge graph vector-based entity retrieval (default if no query engine type option is provided)
  • Knowledge graph keyword-based entity retrieval
  • Knowledge graph hybrid entity retrieval
  • Raw vector index retrieval
  • Custom combo query engine (vector similarity + KG entity retrieval)
  • KnowledgeGraphQueryEngine
  • KnowledgeGraphRAGRetriever

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack NebulaGraphQueryEnginePack --download-dir ./nebulagraph_pack

You can then inspect the files at ./nebulagraph_pack and use them as a template for your own project!

Code Usage

You can download the pack to a ./nebulagraph_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
NebulaGraphQueryEnginePack = download_llama_pack(
    "NebulaGraphQueryEnginePack", "./nebulagraph_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./nebulagraph_pack.

Then, you can set up the pack like so:

pip install llama-index-readers-wikipedia
# Load the docs (example of Paleo diet from Wikipedia)

from llama_index.readers.wikipedia import WikipediaReader

loader = WikipediaReader()
docs = loader.load_data(pages=["Paleolithic diet"], auto_suggest=False)
print(f"Loaded {len(docs)} documents")

# get NebulaGraph credentials (assume it's stored in credentials.json)
with open("credentials.json") as f:
    nebulagraph_connection_params = json.load(f)
    username = nebulagraph_connection_params["username"]
    password = nebulagraph_connection_params["password"]
    ip_and_port = nebulagraph_connection_params["ip_and_port"]

space_name = "paleo_diet"
edge_types, rel_prop_names = ["relationship"], ["relationship"]
tags = ["entity"]
max_triplets_per_chunk = 10

# create the pack
nebulagraph_pack = NebulaGraphQueryEnginePack(
    username=username,
    password=password,
    ip_and_port=ip_and_port,
    space_name=space_name,
    edge_types=edge_types,
    rel_prop_names=rel_prop_names,
    tags=tags,
    max_triplets_per_chunk=max_triplets_per_chunk,
    docs=docs,
)

Optionally, you can pass in the query_engine_type from NebulaGraphQueryEngineType to construct NebulaGraphQueryEnginePack. If query_engine_type is not defined, it defaults to Knowledge Graph vector based entity retrieval.

from llama_index.core.packs.nebulagraph_query_engine.base import (
    NebulaGraphQueryEngineType,
)

# create the pack
nebulagraph_pack = NebulaGraphQueryEnginePack(
    username=username,
    password=password,
    ip_and_port=ip_and_port,
    space_name=space_name,
    edge_types=edge_types,
    rel_prop_names=rel_prop_names,
    tags=tags,
    max_triplets_per_chunk=max_triplets_per_chunk,
    docs=docs,
    query_engine_type=NebulaGraphQueryEngineType.KG_HYBRID,
)

NebulaGraphQueryEnginePack is a enum defined as follows:

class NebulaGraphQueryEngineType(str, Enum):
    """NebulaGraph query engine type"""

    KG_KEYWORD = "keyword"
    KG_HYBRID = "hybrid"
    RAW_VECTOR = "vector"
    RAW_VECTOR_KG_COMBO = "vector_kg"
    KG_QE = "KnowledgeGraphQueryEngine"
    KG_RAG_RETRIEVER = "KnowledgeGraphRAGRetriever"

The run() function is a light wrapper around query_engine.query(), see a sample query below.

response = nebulagraph_pack.run("Tell me about the benefits of paleo diet.")

You can also use modules individually.

# call the query_engine.query()
query_engine = nebulagraph_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_nebulagraph_query_engine-0.4.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_nebulagraph_query_engine-0.4.0.tar.gz
Algorithm Hash digest
SHA256 840723f5e8dad73a455fccbe6ab33d1670bf25c9ad29df4f221753c2d89392ef
MD5 8b3455d39ee57d45a51d1e1bb5bf9621
BLAKE2b-256 e932645caf90578688ccaffc117bb0caa552aff0f73033b8e4aec93a6b970e02

See more details on using hashes here.

File details

Details for the file llama_index_packs_nebulagraph_query_engine-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_nebulagraph_query_engine-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 155cccd082090f7e0aa518ffe185032fa88c91d7cdb7dc9c4e10d86ce9a0d747
MD5 04264fd763acd871e4ff2d031d769a9d
BLAKE2b-256 5e6afb8ef652aead5a3494486f832c20534254e589fc848f758943351f19d223

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page