Skip to main content

llama-index packs neo4j_query_engine integration

Project description

Neo4j Query Engine Pack

This LlamaPack creates a Neo4j query engine, and executes its query function. This pack offers the option of creating multiple types of query engines, namely:

  • Knowledge graph vector-based entity retrieval (default if no query engine type option is provided)
  • Knowledge graph keyword-based entity retrieval
  • Knowledge graph hybrid entity retrieval
  • Raw vector index retrieval
  • Custom combo query engine (vector similarity + KG entity retrieval)
  • KnowledgeGraphQueryEngine
  • KnowledgeGraphRAGRetriever

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack Neo4jQueryEnginePack --download-dir ./neo4j_pack

You can then inspect the files at ./neo4j_pack and use them as a template for your own project!

Code Usage

You can download the pack to a ./neo4j_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
Neo4jQueryEnginePack = download_llama_pack(
    "Neo4jQueryEnginePack", "./neo4j_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./neo4j_pack.

Then, you can set up the pack like so:

pip install llama-index-readers-wikipedia
# Load the docs (example of Paleo diet from Wikipedia)

from llama_index.readers.wikipedia import WikipediaReader

loader = WikipediaReader()
docs = loader.load_data(pages=["Paleolithic diet"], auto_suggest=False)
print(f"Loaded {len(docs)} documents")

# get Neo4j credentials (assume it's stored in credentials.json)
with open("credentials.json") as f:
    neo4j_connection_params = json.load(f)
    username = neo4j_connection_params["username"]
    password = neo4j_connection_params["password"]
    url = neo4j_connection_params["url"]
    database = neo4j_connection_params["database"]

# create the pack
neo4j_pack = Neo4jQueryEnginePack(
    username=username, password=password, url=url, database=database, docs=docs
)

Optionally, you can pass in the query_engine_type from Neo4jQueryEngineType to construct Neo4jQueryEnginePack. If query_engine_type is not defined, it defaults to Knowledge Graph vector based entity retrieval.

from llama_index.core.packs.neo4j_query_engine.base import Neo4jQueryEngineType

# create the pack
neo4j_pack = Neo4jQueryEnginePack(
    username=username,
    password=password,
    url=url,
    database=database,
    docs=docs,
    query_engine_type=Neo4jQueryEngineType.KG_HYBRID,
)

Neo4jQueryEnginePack is a enum defined as follows:

class Neo4jQueryEngineType(str, Enum):
    """Neo4j query engine type"""

    KG_KEYWORD = "keyword"
    KG_HYBRID = "hybrid"
    RAW_VECTOR = "vector"
    RAW_VECTOR_KG_COMBO = "vector_kg"
    KG_QE = "KnowledgeGraphQueryEngine"
    KG_RAG_RETRIEVER = "KnowledgeGraphRAGRetriever"

The run() function is a light wrapper around query_engine.query(), see a sample query below.

response = neo4j_pack.run("Tell me about the benefits of paleo diet.")

You can also use modules individually.

# call the query_engine.query()
query_engine = neo4j_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_neo4j_query_engine-0.4.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_neo4j_query_engine-0.4.0.tar.gz
Algorithm Hash digest
SHA256 00db7f86c073952696683d64acb85c28109279b931271618097feacd35ea8b47
MD5 259da37b1d45c11a3fd5716b827d25c6
BLAKE2b-256 eea630323bc17e0233d38393d9828c6e050bda04ba055dd11f8bd2d30c533233

See more details on using hashes here.

File details

Details for the file llama_index_packs_neo4j_query_engine-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_neo4j_query_engine-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8d8f702bdc1545ba53879ce753108394695d26b5a61b12d5cd99be7b52090830
MD5 b06a9551e352e8de1f9ff6b1464cb61c
BLAKE2b-256 a41185c1f0721da05e61cb62543438ceddee13be8ea67015835343a2d1e40076

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page