llama-index packs rag_evaluator integration
Project description
Retrieval-Augmented Generation (RAG) Evaluation Pack
Get benchmark scores on your own RAG pipeline (i.e. QueryEngine
) on a RAG
dataset (i.e., LabelledRagDataset
). Specifically this pack takes in as input a
query engine and a LabelledRagDataset
, which can also be downloaded from
llama-hub.
CLI Usage
You can download llamapacks directly using llamaindex-cli
, which comes installed with the llama-index
python package:
llamaindex-cli download-llamapack RagEvaluatorPack --download-dir ./rag_evaluator_pack
You can then inspect the files at ./rag_evaluator_pack
and use them as a template for your own project!
Code Usage
You can download the pack to the ./rag_evaluator_pack
directory through python
code as well. The sample script below demonstrates how to construct RagEvaluatorPack
using a LabelledRagDataset
downloaded from llama-hub
and a simple RAG pipeline
built off of its source documents.
from llama_index.core.llama_dataset import download_llama_dataset
from llama_index.core.llama_pack import download_llama_pack
from llama_index.core import VectorStoreIndex
# download a LabelledRagDataset from llama-hub
rag_dataset, documents = download_llama_dataset(
"PaulGrahamEssayDataset", "./paul_graham"
)
# build a basic RAG pipeline off of the source documents
index = VectorStoreIndex.from_documents(documents=documents)
query_engine = index.as_query_engine()
# Time to benchmark/evaluate this RAG pipeline
# Download and install dependencies
RagEvaluatorPack = download_llama_pack(
"RagEvaluatorPack", "./rag_evaluator_pack"
)
# construction requires a query_engine, a rag_dataset, and optionally a judge_llm
rag_evaluator_pack = RagEvaluatorPack(
query_engine=query_engine, rag_dataset=rag_dataset
)
# PERFORM EVALUATION
benchmark_df = rag_evaluator_pack.run() # async arun() also supported
print(benchmark_df)
Output:
rag base_rag
metrics
mean_correctness_score 4.511364
mean_relevancy_score 0.931818
mean_faithfulness_score 1.000000
mean_context_similarity_score 0.945952
Note that rag_evaluator_pack.run()
will also save two files in the same directory
in which the pack was invoked:
.
├── benchmark.csv (CSV format of the benchmark scores)
└── _evaluations.json (raw evaluation results for all examples & predictions)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llama_index_packs_rag_evaluator-0.3.0.tar.gz
.
File metadata
- Download URL: llama_index_packs_rag_evaluator-0.3.0.tar.gz
- Upload date:
- Size: 5.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4a093f127dabab5434fc69c1fb35ab6a35b55de1004b2551c14ea2abb69a742 |
|
MD5 | e1156ebacef06a1974f2d255719b2b98 |
|
BLAKE2b-256 | 346ae9f47b7bc45739ae59e1fd2195173e0b359b245d32915db155a527e5862f |
File details
Details for the file llama_index_packs_rag_evaluator-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: llama_index_packs_rag_evaluator-0.3.0-py3-none-any.whl
- Upload date:
- Size: 5.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2626989b21c0ce4bf2fdbc866598639b9ae3a05b0baea3a9bbad58855f8cd56 |
|
MD5 | 2155965141359bb6a8220774ac6e7abe |
|
BLAKE2b-256 | a4bc2f64714f10a10338d3cd39496ed453a4649fc9d2ae6aefa683cddf720bfc |