Skip to main content

llama-index packs recursive_retriever integration

Project description

Recursive Retriever Packs

Embedded Tables Retriever Pack w/ Unstructured.io

This LlamaPack provides an example of our embedded tables retriever.

This specific template shows the e2e process of building this. It loads a document, builds a hierarchical node graph (with bigger parent nodes and smaller child nodes).

Check out the notebook here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack EmbeddedTablesUnstructuredRetrieverPack --download-dir ./embedded_tables_unstructured_pack

You can then inspect the files at ./embedded_tables_unstructured_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./embedded_tables_unstructured_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
EmbeddedTablesUnstructuredRetrieverPack = download_llama_pack(
    "EmbeddedTablesUnstructuredRetrieverPack",
    "./embedded_tables_unstructured_pack",
)

From here, you can use the pack, or inspect and modify the pack in ./embedded_tables_unstructured_pack.

Then, you can set up the pack like so:

# create the pack
# get documents from any data loader
embedded_tables_unstructured_pack = EmbeddedTablesUnstructuredRetrieverPack(
    "tesla_2021_10k.htm",
)

The run() function is a light wrapper around query_engine.query().

response = embedded_tables_unstructured_pack.run(
    "What was the revenue in 2020?"
)

You can also use modules individually.

# get the node parser
node_parser = embedded_tables_unstructured_pack.node_parser

# get the retriever
retriever = embedded_tables_unstructured_pack.recursive_retriever

# get the query engine
query_engine = embedded_tables_unstructured_pack.query_engine

Recursive Retriever - Small-to-big retrieval

This LlamaPack provides an example of our recursive retriever (small-to-big).

This specific template shows the e2e process of building this. It loads a document, builds a hierarchical node graph (with bigger parent nodes and smaller child nodes).

Check out the notebook here.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack RecursiveRetrieverSmallToBigPack --download-dir ./recursive_retriever_stb_pack

You can then inspect the files at ./recursive_retriever_stb_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./recursive_retriever_stb_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
RecursiveRetrieverSmallToBigPack = download_llama_pack(
    "RecursiveRetrieverSmallToBigPack", "./recursive_retriever_stb_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./recursive_retriever_stb_pack.

Then, you can set up the pack like so:

# create the pack
# get documents from any data loader
recursive_retriever_stb_pack = RecursiveRetrieverSmallToBigPack(
    documents,
)

The run() function is a light wrapper around query_engine.query().

response = recursive_retriever_stb_pack.run(
    "Tell me a bout a Music celebritiy."
)

You can also use modules individually.

# get the recursive retriever
recursive_retriever = recursive_retriever_stb_pack.recursive_retriever

# get the query engine
query_engine = recursive_retriever_stb_pack.query_engine

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_recursive_retriever-0.5.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_recursive_retriever-0.5.0.tar.gz
Algorithm Hash digest
SHA256 4078af5ed2c1ef68edf539ca30d22d7aff3888a773cf25182dbd33c48d488644
MD5 8eb725438844af6e87ef8a1c6626d598
BLAKE2b-256 92738c1e4af4db7bbb546890e6fa6298fbd370eb74869bce9d0e0f58459b3d80

See more details on using hashes here.

File details

Details for the file llama_index_packs_recursive_retriever-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_recursive_retriever-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 745842bc53a3291083da76d68ef9140bae8ff117d755c2b6e1e6913e5976a686
MD5 89181deb2d4a4b892148e8a01fb35454
BLAKE2b-256 96ffbf73c3557798215844282336b28c97b688cf34ede0d344baa3a16ecac410

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page