Skip to main content

llama-index packs redis_ingestion_pipeline integration

Project description

Redis Ingestion Pipeline Pack

This LlamaPack creates an ingestion pipeline, with both a cache and vector store backed by Redis.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack RedisIngestionPipelinePack --download-dir ./redis_ingestion_pack

You can then inspect the files at ./redis_ingestion_pack and use them as a template for your own project!

Code Usage

You can download the pack to a ./redis_ingestion_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
RedisIngestionPipelinePack = download_llama_pack(
    "RedisIngestionPipelinePack", "./redis_ingestion_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./redis_ingestion_pack.

Then, you can set up the pack like so:

from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.openai import OpenAIEmbedding

transformations = [SentenceSplitter(), OpenAIEmbedding()]

# create the pack
ingest_pack = RedisIngestionPipelinePack(
    transformations,
    hostname="localhost",
    port=6379,
    cache_collection_name="ingest_cache",
    vector_collection_name="vector_store",
)

The run() function is a light wrapper around pipeline.run().

You can use this to ingest data and then create an index from the vector store.

pipeline.run(documents)

index = VectorStoreIndex.from_vector_store(inget_pack.vector_store)

You can learn more about the ingestion pipeline at the LlamaIndex documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_redis_ingestion_pipeline-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_redis_ingestion_pipeline-0.3.0.tar.gz
Algorithm Hash digest
SHA256 11acd7118bb49e565127d670e26de64048db9dbe5b0f92cd701d0cc825620913
MD5 f2c4312def6029ae0ee5becb09b7e110
BLAKE2b-256 accb18e9a3a10dd5dad826b86482451cf939ccc648307d246a6cb55296779896

See more details on using hashes here.

File details

Details for the file llama_index_packs_redis_ingestion_pipeline-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_redis_ingestion_pipeline-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 719319b922ef59ea617fc133b11645864404cf433affbd6a2000adcf3eead9a0
MD5 9a44b39862c2aa7e048e302d4b864386
BLAKE2b-256 9d33c5434ae667dcd6e59a5a082817e15add337cd9e861dcfe567088a9c569a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page