Skip to main content

llama-index packs retry_engine_weaviate integration

Project description

Retry Query Engine

This LlamaPack inserts your data into Weaviate and uses the Retry Query Engine for your RAG application.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack WeaviateRetryEnginePack --download-dir ./weaviate_pack

You can then inspect the files at ./weaviate_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./weaviate_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
WeaviateRetryEnginePack = download_llama_pack(
    "WeaviateRetryEnginePack", "./weaviate_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./weaviate_pack.

Then, you can set up the pack like so:

# setup pack arguments
from llama_index.core.vector_stores.types import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import weaviate

client = weaviate.Client()

nodes = [...]

# create the pack
weaviate_pack = WeaviateRetryQueryEnginePack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)

The run() function is a light wrapper around query_engine.query().

response = weaviate_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the retreiver
retriever = weaviate_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = weaviate_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.0.1.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.0.1.tar.gz
Algorithm Hash digest
SHA256 4f413f8b54e0d092c6dc9185b4bc8be45b6c11d7db9c962f23177fd7b052f79f
MD5 81c2c9d926518094bd5db72e9def7eff
BLAKE2b-256 35a1fde2820fb5896a95ce63727c51fd24c9aebc3b10b9973ead18e8d0175750

See more details on using hashes here.

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 932927b37242427e382e1783046afb45059e004dff5d8a9987c6a085e4463575
MD5 f359a64cb936c88ef794a5026c75947c
BLAKE2b-256 6d40ef02e196798e5504ad101b8b9d5bb604aa87a969de4800efe14b533f533a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page