Skip to main content

llama-index packs retry_engine_weaviate integration

Project description

Retry Query Engine

This LlamaPack inserts your data into Weaviate and uses the Retry Query Engine for your RAG application.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack WeaviateRetryEnginePack --download-dir ./weaviate_pack

You can then inspect the files at ./weaviate_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./weaviate_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
WeaviateRetryEnginePack = download_llama_pack(
    "WeaviateRetryEnginePack", "./weaviate_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./weaviate_pack.

Then, you can set up the pack like so:

# setup pack arguments
from llama_index.core.vector_stores.types import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import weaviate

client = weaviate.Client()

nodes = [...]

# create the pack
weaviate_pack = WeaviateRetryQueryEnginePack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)

The run() function is a light wrapper around query_engine.query().

response = weaviate_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the retreiver
retriever = weaviate_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = weaviate_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.1.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.1.0.tar.gz
Algorithm Hash digest
SHA256 8f0313570fbbd1062410a5c1f3e232c3b69daa1870c978230ad5990a07e196fb
MD5 918117dbc0af25d8a2edca9c7dd5641a
BLAKE2b-256 35db3b7c70dbf693d8ffd4b137d5fe5ee918859d3f4af70904e0245d5580da69

See more details on using hashes here.

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1fe024cc4c82e21352ea8423f5f460a787eb98ae4f0db9070c18ea076f12eb08
MD5 b4569ebd45e6c79a8b124aca33db3117
BLAKE2b-256 090264ef2aec6ae521874c02b148d9b058aebab000a63515437f587b9a1a33c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page