Skip to main content

llama-index packs retry_engine_weaviate integration

Project description

Retry Query Engine

This LlamaPack inserts your data into Weaviate and uses the Retry Query Engine for your RAG application.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack WeaviateRetryEnginePack --download-dir ./weaviate_pack

You can then inspect the files at ./weaviate_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./weaviate_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
WeaviateRetryEnginePack = download_llama_pack(
    "WeaviateRetryEnginePack", "./weaviate_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./weaviate_pack.

Then, you can set up the pack like so:

# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import weaviate

client = weaviate.Client()

nodes = [...]

# create the pack
weaviate_pack = WeaviateRetryQueryEnginePack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)

The run() function is a light wrapper around query_engine.query().

response = weaviate_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the retriever
retriever = weaviate_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = weaviate_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.2.0.tar.gz
Algorithm Hash digest
SHA256 20851eb4226ac023b5a3521484e02e041974bca235be60790846817860953364
MD5 065a91ea6bef8be6acd793a6b8be1b13
BLAKE2b-256 aac6e9f10f68a28aa7b0a1de034cde688ade4e28df613e3b564fe73a9a41abd0

See more details on using hashes here.

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3e19c2225b60e240d390a01b0758e44886e348db47ad39eb62ec0370a4dc9998
MD5 208cfc69c298f64eb97f93a6b8be15c2
BLAKE2b-256 65e9fdbcee82afaaf2ac365a6830ab29e4dcab5711f4a4bba0b89e62822e5234

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page