Skip to main content

llama-index packs retry_engine_weaviate integration

Project description

Retry Query Engine

This LlamaPack inserts your data into Weaviate and uses the Retry Query Engine for your RAG application.

CLI Usage

You can download llamapacks directly using llamaindex-cli, which comes installed with the llama-index python package:

llamaindex-cli download-llamapack WeaviateRetryEnginePack --download-dir ./weaviate_pack

You can then inspect the files at ./weaviate_pack and use them as a template for your own project.

Code Usage

You can download the pack to a the ./weaviate_pack directory:

from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
WeaviateRetryEnginePack = download_llama_pack(
    "WeaviateRetryEnginePack", "./weaviate_pack"
)

From here, you can use the pack, or inspect and modify the pack in ./weaviate_pack.

Then, you can set up the pack like so:

# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import weaviate

client = weaviate.Client()

nodes = [...]

# create the pack
weaviate_pack = WeaviateRetryQueryEnginePack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)

The run() function is a light wrapper around query_engine.query().

response = weaviate_pack.run("Tell me a bout a Music celebritiy.")

You can also use modules individually.

# use the retriever
retriever = weaviate_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = weaviate_pack.query_engine
response = query_engine.query("query_str")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.4.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.4.0.tar.gz
Algorithm Hash digest
SHA256 5425108e064c2c01d93ef447511505c5525054aa973001b0258a015a0e0880e4
MD5 f8557dd1f9a25426e8f20189c4197f43
BLAKE2b-256 f5ba3c51bd30e8bfbe7b762e897d11e1bec5b83c1d9759c14d39f04928affcc8

See more details on using hashes here.

File details

Details for the file llama_index_packs_retry_engine_weaviate-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_packs_retry_engine_weaviate-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 201fa7af1a4068fa8e77f13bb134ae94ecc5ea66b98f0db0adaa51f57cf3e5ab
MD5 06697d17c2d888a984b3fbc4798deda0
BLAKE2b-256 f069eea5b3d66d2f66d979603a47c91008e82cf31167502007d12895434bb6fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page