Skip to main content

llama-index postprocessor dashscope-rerank integration

Project description

LlamaIndex Postprocessor Integration: DashScope-Rerank

The llama-index-postprocessor-dashscope-rerank package contains LlamaIndex integrations for the gte-rerank series models provided by Alibaba Tongyi Laboratory.

Installation

pip install --upgrade llama-index llama-index-core llama-index-postprocessor-dashscope-rerank

Setup

Get started:

  1. Obtain the API-KEY from the Alibaba Cloud ModelStudio platform.
  2. Set API-KEY
export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY

Example:

from llama_index.core.data_structs import Node
from llama_index.core.schema import NodeWithScore
from llama_index.postprocessor.dashscope_rerank import DashScopeRerank

nodes = [
    NodeWithScore(node=Node(text="text1"), score=0.7),
    NodeWithScore(node=Node(text="text2"), score=0.8),
]

dashscope_rerank = DashScopeRerank(top_n=5)
results = dashscope_rerank.postprocess_nodes(nodes, query_str="<user query>")
for res in results:
    print("Text: ", res.node.get_content(), "Score: ", res.score)

output

Text:  text1 Score:  0.25589250620997755
Text:  text2 Score:  0.18071043165292258

Parameters

Name Type Description Default
model str model name gte-rerank
top_n int The number of top documents to be returned in the ranking; if not specified, all candidate documents will be returned. If the specified top_n value exceeds the number of input candidate documents, all documents will be returned. 3
return_documents bool Whether to return the original text for each document in the returned sorted result list, with the default value being False. False
api_key str The DashScope api key. None

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_postprocessor_dashscope_rerank-0.1.3.tar.gz.

File metadata

File hashes

Hashes for llama_index_postprocessor_dashscope_rerank-0.1.3.tar.gz
Algorithm Hash digest
SHA256 a6c32989986fa64f939cd67ca80f947b41bfcb02048f5b023b3390bc4a634392
MD5 1f11d3ea3c02fd218c50ed31efa0d5c9
BLAKE2b-256 a36a4296298745e9e44bb32cdfeec4847399973271598c8d743242e4d454d10e

See more details on using hashes here.

File details

Details for the file llama_index_postprocessor_dashscope_rerank-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_postprocessor_dashscope_rerank-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 574187bede971465def1a1d8b509a9821865e155736cba08547446ac52fb7660
MD5 807a274b8557951d2a1229359454e20f
BLAKE2b-256 ffa1d56de3dba8143ae2dafbb48630946c9c472de82e6d7645d48eebca16b112

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page