Skip to main content

llama-index postprocessor dashscope-rerank integration

Project description

LlamaIndex Postprocessor Integration: DashScope-Rerank

The llama-index-postprocessor-dashscope-rerank package contains LlamaIndex integrations for the gte-rerank series models provided by Alibaba Tongyi Laboratory.

Installation

pip install --upgrade llama-index llama-index-core llama-index-postprocessor-dashscope-rerank

Setup

Get started:

  1. Obtain the API-KEY from the Alibaba Cloud ModelStudio platform.
  2. Set API-KEY
export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY

Example:

from llama_index.core.data_structs import Node
from llama_index.core.schema import NodeWithScore
from llama_index.postprocessor.dashscope_rerank import DashScopeRerank

nodes = [
    NodeWithScore(node=Node(text="text1"), score=0.7),
    NodeWithScore(node=Node(text="text2"), score=0.8),
]

dashscope_rerank = DashScopeRerank(top_n=5)
results = dashscope_rerank.postprocess_nodes(nodes, query_str="<user query>")
for res in results:
    print("Text: ", res.node.get_content(), "Score: ", res.score)

output

Text:  text1 Score:  0.25589250620997755
Text:  text2 Score:  0.18071043165292258

Parameters

Name Type Description Default
model str model name gte-rerank
top_n int The number of top documents to be returned in the ranking; if not specified, all candidate documents will be returned. If the specified top_n value exceeds the number of input candidate documents, all documents will be returned. 3
return_documents bool Whether to return the original text for each document in the returned sorted result list, with the default value being False. False
api_key str The DashScope api key. None

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_postprocessor_dashscope_rerank-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_postprocessor_dashscope_rerank-0.2.0.tar.gz
Algorithm Hash digest
SHA256 18d112cad6b73ad658d32e1ad0bad9ce580caccdfd6262f21e12ea791e72f362
MD5 3af55c6ccd64c5ba205e0086393332d7
BLAKE2b-256 9c4dc34e1b031029f6597ae8b08bf5d546f59cf1570d6e280dd1a1c2053a6ffd

See more details on using hashes here.

File details

Details for the file llama_index_postprocessor_dashscope_rerank-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_postprocessor_dashscope_rerank-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ca1e06c7425e2eade6c197eba2d286881e6495a3e90dbaedfe6ce9ae247f7bb0
MD5 5ff84af89f4d7e1bddf1bcd988fbe023
BLAKE2b-256 97a2249b25d6dc3e65d97464efb949c2b218176fde96b0cd3d429a22434f7885

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page