Skip to main content

llama-index postprocessor dashscope-rerank integration

Project description

LlamaIndex Postprocessor Integration: DashScope-Rerank

The llama-index-postprocessor-dashscope-rerank package contains LlamaIndex integrations for the gte-rerank series models provided by Alibaba Tongyi Laboratory.

Installation

pip install --upgrade llama-index llama-index-core llama-index-postprocessor-dashscope-rerank

Setup

Get started:

  1. Obtain the API-KEY from the Alibaba Cloud ModelStudio platform.
  2. Set API-KEY
export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY

Example:

from llama_index.core.data_structs import Node
from llama_index.core.schema import NodeWithScore
from llama_index.postprocessor.dashscope_rerank import DashScopeRerank

nodes = [
    NodeWithScore(node=Node(text="text1"), score=0.7),
    NodeWithScore(node=Node(text="text2"), score=0.8),
]

dashscope_rerank = DashScopeRerank(top_n=5)
results = dashscope_rerank.postprocess_nodes(nodes, query_str="<user query>")
for res in results:
    print("Text: ", res.node.get_content(), "Score: ", res.score)

output

Text:  text1 Score:  0.25589250620997755
Text:  text2 Score:  0.18071043165292258

Parameters

Name Type Description Default
model str model name gte-rerank
top_n int The number of top documents to be returned in the ranking; if not specified, all candidate documents will be returned. If the specified top_n value exceeds the number of input candidate documents, all documents will be returned. 3
return_documents bool Whether to return the original text for each document in the returned sorted result list, with the default value being False. False
api_key str The DashScope api key. None

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_postprocessor_dashscope_rerank-0.2.1.tar.gz.

File metadata

File hashes

Hashes for llama_index_postprocessor_dashscope_rerank-0.2.1.tar.gz
Algorithm Hash digest
SHA256 f2091e4ad876f1b2381fedce08189a0a8080fbb74f7a0e45060067bf1fa20b08
MD5 94f3aff80cdbc41f7ad08d70ffe3d4a7
BLAKE2b-256 f88a81b1d6665fa9f6d2d62070ccccbc36776802f0737f09484eee83687465e8

See more details on using hashes here.

File details

Details for the file llama_index_postprocessor_dashscope_rerank-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_postprocessor_dashscope_rerank-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 516a9f5aae5a6ce1c4e7014fa32cd8236771965bbd3b91136e6bf3e989bbc35b
MD5 3491fa8a4d308842638d5493f844ec1e
BLAKE2b-256 f64f23124a6582dae6ab7c8e1789d558a7fd579a6ba0bdfed4f508a93f061035

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page