Skip to main content

llama-index readers airbyte_gong integration

Project description

Airbyte Gong Loader

pip install llama-index-readers-airbyte-gong

The Airbyte Gong Loader allows you to access different Gong objects.

Usage

Here's an example usage of the AirbyteGongReader.

from llama_index.readers.airbyte_gong import AirbyteGongReader

gong_config = {
    # ...
}
reader = AirbyteGongReader(config=gong_config)
documents = reader.load_data(stream_name="calls")

Configuration

Check out the Airbyte documentation page for details about how to configure the reader. The JSON schema the config object should adhere to can be found on Github: https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-gong/source_gong/spec.yaml.

The general shape looks like this:

{
    "access_key": "<access key name>",
    "access_key_secret": "<access key secret>",
    "start_date": "<date from which to start retrieving records from in ISO format, e.g. 2020-10-20T00:00:00Z>",
}

By default all fields are stored as metadata in the documents and the text is set to the JSON representation of all the fields. Construct the text of the document by passing a record_handler to the reader:

def handle_record(record, id):
    return Document(
        doc_id=id, text=record.data["title"], extra_info=record.data
    )


reader = AirbyteGongReader(config=gong_config, record_handler=handle_record)

Lazy loads

The reader.load_data endpoint will collect all documents and return them as a list. If there are a large number of documents, this can cause issues. By using reader.lazy_load_data instead, an iterator is returned which can be consumed document by document without the need to keep all documents in memory.

Incremental loads

This loader supports loading data incrementally (only returning documents that weren't loaded last time or got updated in the meantime):

reader = AirbyteGongReader(config={...})
documents = reader.load_data(stream_name="calls")
current_state = reader.last_state  # can be pickled away or stored otherwise

updated_documents = reader.load_data(
    stream_name="calls", state=current_state
)  # only loads documents that were updated since last time

This loader is designed to be used as a way to load data into LlamaIndex.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_readers_airbyte_gong-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_airbyte_gong-0.3.0.tar.gz
Algorithm Hash digest
SHA256 9eae1f078dea73f0bda27c003af6b6a37b60d1413255cf8bb40cdc5c433b6376
MD5 7ce8f1aea00b40fc9803527b322ded68
BLAKE2b-256 39aa2bab6c967922b7c747198d8e9cdaec5856f76d92086773223dad467dd047

See more details on using hashes here.

File details

Details for the file llama_index_readers_airbyte_gong-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_airbyte_gong-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 077a182443da0700fda7222c02f6aa3b2b8553715fa16b8afeb3a91dfda6c783
MD5 098dac1d7bf4fb982b68a1f4ae5203cf
BLAKE2b-256 fa8888899d076a6586c0ca30d9d17659f5e4f15c92d6cb9e484528dabe5e0d1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page