Skip to main content

llama-index readers airbyte_gong integration

Project description

Airbyte Gong Loader

pip install llama-index-readers-airbyte-gong

The Airbyte Gong Loader allows you to access different Gong objects.

Usage

Here's an example usage of the AirbyteGongReader.

from llama_index.readers.airbyte_gong import AirbyteGongReader

gong_config = {
    # ...
}
reader = AirbyteGongReader(config=gong_config)
documents = reader.load_data(stream_name="calls")

Configuration

Check out the Airbyte documentation page for details about how to configure the reader. The JSON schema the config object should adhere to can be found on Github: https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-gong/source_gong/spec.yaml.

The general shape looks like this:

{
    "access_key": "<access key name>",
    "access_key_secret": "<access key secret>",
    "start_date": "<date from which to start retrieving records from in ISO format, e.g. 2020-10-20T00:00:00Z>",
}

By default all fields are stored as metadata in the documents and the text is set to the JSON representation of all the fields. Construct the text of the document by passing a record_handler to the reader:

def handle_record(record, id):
    return Document(
        doc_id=id, text=record.data["title"], extra_info=record.data
    )


reader = AirbyteGongReader(config=gong_config, record_handler=handle_record)

Lazy loads

The reader.load_data endpoint will collect all documents and return them as a list. If there are a large number of documents, this can cause issues. By using reader.lazy_load_data instead, an iterator is returned which can be consumed document by document without the need to keep all documents in memory.

Incremental loads

This loader supports loading data incrementally (only returning documents that weren't loaded last time or got updated in the meantime):

reader = AirbyteGongReader(config={...})
documents = reader.load_data(stream_name="calls")
current_state = reader.last_state  # can be pickled away or stored otherwise

updated_documents = reader.load_data(
    stream_name="calls", state=current_state
)  # only loads documents that were updated since last time

This loader is designed to be used as a way to load data into LlamaIndex.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_readers_airbyte_gong-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_airbyte_gong-0.2.0.tar.gz
Algorithm Hash digest
SHA256 26a4388077eeeba0333788ab075ec01caa0ea0099a9b4070f1ae0e01c055f54b
MD5 63ad8b58365b8559eea909a9ce3b9f19
BLAKE2b-256 5187b219b68e3ba656897f95e8e2c86e52e4384029102f7d4bdb9ed8d2873be4

See more details on using hashes here.

File details

Details for the file llama_index_readers_airbyte_gong-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_airbyte_gong-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d22cbf374c3137bd054b98ce6ffcbb62025fcccf8461770a2906d142cac050f7
MD5 7a8bfb13dea3daa89063d493c8a51fdf
BLAKE2b-256 e0c4c0d1fac5258584eae0f67e54030c88750af1fd452e422bdaaa8aad5c6f59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page