Skip to main content

llama-index readers airbyte_typeform integration

Project description

Airbyte Typeform Loader

pip install llama-index-readers-airbyte-typeform

The Airbyte Typeform Loader allows you to access different Typeform objects.

Usage

Here's an example usage of the AirbyteTypeformReader.

from llama_index.readers.airbyte_typeform import AirbyteTypeformReader

typeform_config = {
    # ...
}
reader = AirbyteTypeformReader(config=typeform_config)
documents = reader.load_data(stream_name="forms")

Configuration

Check out the Airbyte documentation page for details about how to configure the reader. The JSON schema the config object should adhere to can be found on Github: https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-typeform/source_typeform/spec.json.

The general shape looks like this:

{
    "credentials": {
        "auth_type": "Private Token",
        "access_token": "<your auth token>",
    },
    "start_date": "<date from which to start retrieving records from in ISO format, e.g. 2020-10-20T00:00:00Z>",
    "form_ids": [
        "<id of form to load records for>"
    ],  # if omitted, records from all forms will be loaded
}

By default all fields are stored as metadata in the documents and the text is set to the JSON representation of all the fields. Construct the text of the document by passing a record_handler to the reader:

def handle_record(record, id):
    return Document(
        doc_id=id, text=record.data["title"], extra_info=record.data
    )


reader = AirbyteTypeformReader(
    config=typeform_config, record_handler=handle_record
)

Lazy loads

The reader.load_data endpoint will collect all documents and return them as a list. If there are a large number of documents, this can cause issues. By using reader.lazy_load_data instead, an iterator is returned which can be consumed document by document without the need to keep all documents in memory.

Incremental loads

This loader supports loading data incrementally (only returning documents that weren't loaded last time or got updated in the meantime):

reader = AirbyteTypeformReader(config={...})
documents = reader.load_data(stream_name="forms")
current_state = reader.last_state  # can be pickled away or stored otherwise

updated_documents = reader.load_data(
    stream_name="forms", state=current_state
)  # only loads documents that were updated since last time

This loader is designed to be used as a way to load data into LlamaIndex.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_readers_airbyte_typeform-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_airbyte_typeform-0.3.0.tar.gz
Algorithm Hash digest
SHA256 bb70c3ca4e7b7a491b327c1c74fbd3ebdc45d90bbe3586031f35be514f2be0a0
MD5 b35ed684aff2b99f23983ae35ad1be24
BLAKE2b-256 22233627eef4eccbd29890c1f95448a12a68aac9a1a3b06c7b06edd11555fb63

See more details on using hashes here.

File details

Details for the file llama_index_readers_airbyte_typeform-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_airbyte_typeform-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c63682b03b20793365fb6d90853a3c49ddc421216f9d031acfe08dd7144a4c56
MD5 2410785138de673022e8accf6f2cd44d
BLAKE2b-256 64aec98bf41b481c1ae0f2750310a9cdcf34cf290bc0f5ed0a98883752e45eb3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page