Skip to main content

llama-index readers airbyte_typeform integration

Project description

Airbyte Typeform Loader

The Airbyte Typeform Loader allows you to access different Typeform objects.

Installation

  • Install llama_hub: pip install llama_hub
  • Install the typeform source: pip install airbyte-source-typeform

Usage

Here's an example usage of the AirbyteTypeformReader.

from llama_hub.airbyte_typeform import AirbyteTypeformReader

typeform_config = {
    # ...
}
reader = AirbyteTypeformReader(config=typeform_config)
documents = reader.load_data(stream_name="forms")

Configuration

Check out the Airbyte documentation page for details about how to configure the reader. The JSON schema the config object should adhere to can be found on Github: https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-typeform/source_typeform/spec.json.

The general shape looks like this:

{
    "credentials": {
        "auth_type": "Private Token",
        "access_token": "<your auth token>",
    },
    "start_date": "<date from which to start retrieving records from in ISO format, e.g. 2020-10-20T00:00:00Z>",
    "form_ids": [
        "<id of form to load records for>"
    ],  # if omitted, records from all forms will be loaded
}

By default all fields are stored as metadata in the documents and the text is set to the JSON representation of all the fields. Construct the text of the document by passing a record_handler to the reader:

def handle_record(record, id):
    return Document(
        doc_id=id, text=record.data["title"], extra_info=record.data
    )


reader = AirbyteTypeformReader(
    config=typeform_config, record_handler=handle_record
)

Lazy loads

The reader.load_data endpoint will collect all documents and return them as a list. If there are a large number of documents, this can cause issues. By using reader.lazy_load_data instead, an iterator is returned which can be consumed document by document without the need to keep all documents in memory.

Incremental loads

This loader supports loading data incrementally (only returning documents that weren't loaded last time or got updated in the meantime):

reader = AirbyteTypeformReader(config={...})
documents = reader.load_data(stream_name="forms")
current_state = reader.last_state  # can be pickled away or stored otherwise

updated_documents = reader.load_data(
    stream_name="forms", state=current_state
)  # only loads documents that were updated since last time

This loader is designed to be used as a way to load data into LlamaIndex and/or subsequently used as a Tool in a LangChain Agent. See here for examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_readers_airbyte_typeform-0.1.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_airbyte_typeform-0.1.0.tar.gz
Algorithm Hash digest
SHA256 3a45f20e827a943a638f71403abc0b497b487900ea5ffcf73c1ee4c0d5ca6fe8
MD5 c82d474e8fd7a5e6bf59ed0119404a79
BLAKE2b-256 314dbde6ad9296427325e5b9344eef8583c85c6a7bd6faf992ae7df5b72de625

See more details on using hashes here.

File details

Details for the file llama_index_readers_airbyte_typeform-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_airbyte_typeform-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fe6989d509392950d8e17f3388a486c877422364f1abae96cb09dfb2d2a469c5
MD5 4b50cf9cfeac81aeba21025f82370c8a
BLAKE2b-256 bde62ba5f997bb5c2c391e8f263bbf1d9c01666a614aee502cdd044265b4c868

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page