Skip to main content

llama-index readers chroma integration

Project description

LlamaIndex Readers Integration: Chroma

Overview

Chroma Reader is a tool designed to retrieve documents from existing persisted Chroma collections. Chroma is a framework for managing document collections and their associated embeddings efficiently.

Installation

You can install Chroma Reader via pip:

pip install llama-index-readers-chroma

Usage

from llama_index.core.schema import Document
from llama_index.readers.chroma import ChromaReader

# Initialize ChromaReader with the collection name and optional parameters
reader = ChromaReader(
    collection_name="<Your Collection Name>",
    persist_directory="<Directory Path>",  # Optional: Directory where the collection is persisted
    chroma_api_impl="rest",  # Optional: Chroma API implementation (default: "rest")
    chroma_db_impl=None,  # Optional: Chroma DB implementation (default: None)
    host="localhost",  # Optional: Host for Chroma DB (default: "localhost")
    port=8000,  # Optional: Port for Chroma DB (default: 8000)
)

# Load data from Chroma collection
documents = reader.load_data(
    query_embedding=None,  # Provide query embedding if searching by embeddings
    limit=10,  # Number of results to retrieve
    where=None,  # Filter condition for metadata
    where_document=None,  # Filter condition for document
    query=["search term"],  # Provide query text if searching by text
)

This loader is designed to be used as a way to load data into LlamaIndex and/or subsequently used as a Tool in a LangChain Agent.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_chroma-0.2.0.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_chroma-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_chroma-0.2.0.tar.gz
Algorithm Hash digest
SHA256 d30819fac543eba56dc3ba3f79a537990abb9f6500f9fc201fdd7b455e159b40
MD5 bf3c0225e148d89e5482cec3ee22b39b
BLAKE2b-256 e1c2de899e64f4bba3ba3c70b1ef31584ff3298934714e70c76d84939c477788

See more details on using hashes here.

File details

Details for the file llama_index_readers_chroma-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_chroma-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ee3af81045fe5c2820e69ac259fb2b36fbf4e59f96843869a3b655e4f57cd9a1
MD5 1e262af6bbffaf9a92a7f2d30702e2af
BLAKE2b-256 cd1dfbfc69b1af1ed6ae47259c715d549d28b0f2e58b11ec1ac93a2b27c5a746

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page