Skip to main content

llama-index readers couchbase integration

Project description

LlamaIndex Readers Integration: Couchbase

pip install llama-index-readers-couchbase

This loader loads documents from Couchbase cluster. The user specifies a Couchbase client or credentials to initialize the reader. They can specify the SQL++ query to fetch the relevant docs.

Usage

Here's an example usage of the CouchbaseReader.

import os

from llama_index.readers.couchbase import CouchbaseReader

connection_string = (
    "couchbase://localhost"  # valid Couchbase connection string
)
db_username = "<valid_database_user_with_read_access_to_bucket_with_data>"
db_password = "<password_for_database_user>"

# query is a valid SQL++ query that is passed to client.query()
query = """
    SELECT h.* FROM `travel-sample`.inventory.hotel h
        WHERE h.country = 'United States'
        LIMIT 5
        """

reader = CouchbaseLoader(
    connection_string=connection_string,
    db_username=db_username,
    db_password=db_password,
)

# It is also possible to pass an initialized Couchbase client to the document loader
# from couchbase.auth import PasswordAuthenticator  # noqa: E402
# from couchbase.cluster import Cluster # noqa: E402
# from couchbase.options import ClusterOptions # noqa: E402

# auth = PasswordAuthenticator(
#    db_username,
#    db_password,
# )

# couchbase_client = Cluster(connection_string, ClusterOptions(auth))
# reader = CouchbaseLoader(client=couchbase_client)

# fields to be written to the document
text_fields = ["name", "title", "address", "reviews"]

# metadata fields to be written to the document's metadata
metadata_fields = (["country", "city"],)

documents = reader.load_data(
    query=query, text_fields=text_fields, metadata_fields=metadata_fields
)

This loader is designed to be used as a way to load data into LlamaIndex. See here for examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_couchbase-0.2.0.tar.gz (3.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_couchbase-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_couchbase-0.2.0.tar.gz
Algorithm Hash digest
SHA256 02610de47597dcb8f85aa7b31562b2a8aa5f43b0b9c9717b2a39658522540199
MD5 a5a1f46b5bf244f5dcf77f41e69ee62f
BLAKE2b-256 126bf9c622f5eabbdd7e84abefbf2d1ebfc7ce7a820fd8702a5ce2637a4ac809

See more details on using hashes here.

File details

Details for the file llama_index_readers_couchbase-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_couchbase-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 17e9e1592dfe01135fa364384a0b44f2764efec5a795ae1e6207e843e752118d
MD5 b037c883992bb1f4c68a5c41d5cd8b9f
BLAKE2b-256 ef3e820f536e2c7eddff2d9499b99a770a68f96433020b0ed2db8b0054caa92f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page