Skip to main content

llama-index readers dashvector integration

Project description

LlamaIndex Readers Integration: Dashvector

Overview

DashVector Reader is a tool designed to retrieve documents from DashVector clusters efficiently.

Installation

You can install DashVector Reader via pip:

pip install llama-index-readers-dashvector

To use DashVector, you must have an API key. Here are the installation instructions

Usage

from llama_index.core.schema import Document
from llama_index.readers.dashvector import DashVectorReader

# Initialize DashVectorReader with the API key and cluster endpoint
reader = DashVectorReader(
    api_key="<Your API Key>", endpoint="<Cluster Endpoint>"
)

# Load data from DashVector
documents = reader.load_data(
    collection_name="<Collection Name>",
    vector=[0.1, 0.2, 0.3],  # Query vector
    topk=10,  # Number of results to return
    separate_documents=True,  # Whether to return separate documents
    filter=None,  # Optional: Filter conditions
    include_vector=True,  # Whether to include the embedding in the response
    output_fields=None,  # Optional: Fields Filter
)

This loader is designed to be used as a way to load data into LlamaIndex and/or subsequently used as a Tool in a LangChain Agent.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_dashvector-0.4.0.tar.gz (2.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_dashvector-0.4.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_dashvector-0.4.0.tar.gz
Algorithm Hash digest
SHA256 92f75a9c5535149e7a6b3c4369b14810bd44105c97ee2aa432e484836b47ad86
MD5 0989fed77c1ac931cfc2fac63b7ad233
BLAKE2b-256 c4667adeae98775931b8797510fefc03e8ea300df3eb0c4b76230494ff348e10

See more details on using hashes here.

File details

Details for the file llama_index_readers_dashvector-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_dashvector-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f36e5a3926db41545b0930b7a775914a6e4377234b58d23704ac148617f0ea36
MD5 56ad870e8732f926024fdac57326fccd
BLAKE2b-256 ae747ecb8d1db5bf2d624bdc4b18237c4eca545451317305623e3b0d64da880f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page