Skip to main content

llama-index readers faiss integration

Project description

LlamaIndex Readers Integration: Faiss

Overview

Faiss Reader retrieves documents through an existing in-memory Faiss index. These documents can then be used in a downstream LlamaIndex data structure. If you wish to use Faiss itself as an index to organize documents, insert documents, and perform queries on them, please use VectorStoreIndex with FaissVectorStore.

Installation

You can install Faiss Reader via pip:

pip install llama-index-readers-faiss

Usage

from llama_index.readers.faiss import FaissReader

# Initialize FaissReader with an existing Faiss Index object
reader = FaissReader(index="<Faiss Index Object>")

# Load data from Faiss
documents = reader.load_data(
    query="<Query Vector>",  # 2D numpy array of query vectors
    id_to_text_map={"<ID>": "<Text>"},  # A map from IDs to text
    k=4,  # Number of nearest neighbors to retrieve
    separate_documents=True,  # Whether to return separate documents
)

This loader is designed to be used as a way to load data into LlamaIndex.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_faiss-0.3.0.tar.gz (2.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_faiss-0.3.0.tar.gz.

File metadata

  • Download URL: llama_index_readers_faiss-0.3.0.tar.gz
  • Upload date:
  • Size: 2.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0

File hashes

Hashes for llama_index_readers_faiss-0.3.0.tar.gz
Algorithm Hash digest
SHA256 34e17f71bc943868d478231703c5884937b0422126e5136a6a4cde72319ee6fb
MD5 e6275f4769e17304d24839e40f40b95b
BLAKE2b-256 c308e09b6223a693a4ea8df76734023cd80ed7c57d1665b0cc46f6eb7e02c4d0

See more details on using hashes here.

File details

Details for the file llama_index_readers_faiss-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_faiss-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 788570aa309ce95c4b339aaf7a92b26d8cc05f62d6c3a66d2b6a5da50ab8b784
MD5 3bf40f15d70e7254c83907af9bd006b0
BLAKE2b-256 7b5dbe5721a9371f3eb191a7afb8d82cc0fc98600ef107101f61289c74607eb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page