Skip to main content

llama-index readers kaltura e-search integration

Project description

Kaltura eSearch Loader

pip install llama-index-readers-kaltura-esearch

This loader reads Kaltura Entries from Kaltura based on a Kaltura eSearch API call. Search queries can be passed as a pre-defined object of KalturaESearchEntryParams, or through a simple free text query. The result is a list of documents containing the Kaltura Entries and Captions json.

Parameters

KalturaESearchEntryParams

This is a Kaltura class used for performing search operations in Kaltura. You can use this class to define various search criteria, such as search phrases, operators, and objects to be searched.

For example, you can search for entries with specific tags, created within a specific time frame, or containing specific metadata.

Kaltura Configuration

To use the Kaltura eSearch Loader, you need to provide the following configuration credentials:

Parameter Description Default Value
partnerId Your Kaltura partner ID. Mandatory (no default)
apiSecret Your Kaltura API secret key (aka Admin Secret). Mandatory (no default)
userId Your Kaltura user ID. Mandatory (no default)
ksType The Kaltura session type. KalturaSessionType.ADMIN
ksExpiry The Kaltura session expiry time. 86400 seconds
ksPrivileges The Kaltura session privileges. "disableentitlement"
kalturaApiEndpoint The Kaltura API endpoint URL. "https://cdnapi-ev.kaltura.com/"
requestTimeout The request timeout duration in seconds. 500 seconds
shouldLogApiCalls If passed True, all the Kaltura API calls will also be printed to log (only use during debug). False

load_data

This method run the search in Kaltura and load Kaltura entries in a list of dictionaries.

Method inputs

  • search_params: search parameters of type KalturaESearchEntryParams with pre-set search queries. If not provided, the other parameters will be used to construct the search query.
  • search_operator_and: if True, the constructed search query will have AND operator between query filters, if False, the operator will be OR.
  • free_text: if provided, will be used as the free text query of the search in Kaltura.
  • category_ids: if provided, will only search for entries that are found inside these category ids.
  • withCaptions: determines whether or not to also download captions/transcript contents from Kaltura.
  • maxEntries: sets the maximum number of entries to pull from Kaltura, between 0 to 500 (max pageSize in Kaltura).

Method output

Each dictionary in the response represents a Kaltura media entry, where the keys are strings (field names) and the values can be of any type:

Column Name Data Type Description
entry_id str Unique identifier of the entry
entry_name str Name of the entry
entry_description str Description of the entry
entry_captions JSON Captions of the entry
entry_media_type int Type of the media (KalturaMediaType)
entry_media_date int Date of the media Unix timestamp
entry_ms_duration int Duration of the entry in ms
entry_last_played_at int Last played date of the entry Unix timestamp
entry_application str The app that created this entry (KalturaEntryApplication)
entry_tags str Tags of the entry (comma separated)
entry_reference_id str Reference ID of the entry

Usage

First, instantiate the KalturaReader (aka Kaltura Loader) with your Kaltura configuration credentials:

from llama_index.readers.kaltura_esearch import KalturaESearchReader

loader = KalturaESearchReader(
    partnerId="INSERT_YOUR_PARTNER_ID",
    apiSecret="INSERT_YOUR_ADMIN_SECRET",
    userId="INSERT_YOUR_USER_ID",
)

Using an instance of KalturaESearchEntryParams

Then, create an instance of KalturaESearchEntryParams and set your desired search parameters:

from KalturaClient.Plugins.ElasticSearch import (
    KalturaESearchEntryParams,
    KalturaESearchEntryOperator,
    KalturaESearchOperatorType,
    KalturaESearchUnifiedItem,
)

# instantiate the params object
search_params = KalturaESearchEntryParams()

# define search parameters (for example, search for entries with a certain tag)
search_params.searchOperator = KalturaESearchEntryOperator()
search_params.searchOperator.operator = KalturaESearchOperatorType.AND_OP
search_params.searchOperator.searchItems = [KalturaESearchUnifiedItem()]
search_params.searchOperator.searchItems[0].searchTerm = "my_tag"

Once you have your KalturaESearchEntryParams ready, you can pass it to the Kaltura Loader:

# Using search params
entry_docs = loader.load_data(search_params)

Using Free Text Search

# Simple pass the search params into the load_data method without setting search_params
entry_docs = loader.load_data(
    search_operator_and=True,
    free_text="education",
    category_ids=None,
    with_captions=True,
    max_entries=5,
)

For a more elaborate example, see: llamaindex_kaltura_esearch_reader_example.py

This loader is designed to be used as a way to load data into LlamaIndex.

About Kaltura

Kaltura Video Cloud is a Digital Experience Platform enabling streamlined creation, management, and distribution of media content (video, audio, image, doc, live stream, real-time video). It powers many applications across industries with collaboration, interactivity, virtual events, and deep video analytics capabilities.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_readers_kaltura_esearch-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_kaltura_esearch-0.3.0.tar.gz
Algorithm Hash digest
SHA256 8316661df42642b7d5f7bce0022d6a1da1f49cff7d4dd4e7a2f89791e2d85586
MD5 807b12e67c0e7102d0dbb056c40243e7
BLAKE2b-256 c9ca64811ae9d82e6f733fe083ad661fc1406edaf20d9baba4ba5d0bad87355e

See more details on using hashes here.

File details

Details for the file llama_index_readers_kaltura_esearch-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_kaltura_esearch-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 083ffca92491c00d790d469a4813ce3f083ca561b363b8cb6dde221e09325811
MD5 c3b97c0300d3296dd27e8f6718fb2575
BLAKE2b-256 0ac9647f74e79d3101dcdef3cea0f1d98c63c8c5589f32b5f8ea9d2abb92e7a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page