Skip to main content

llama-index readers metal integration

Project description

LlamaIndex Readers Integration: Metal

Overview

Metal Reader is designed to load data from the Metal Vector store, which provides search functionality based on query embeddings and filters. It retrieves documents from the Metal index associated with the provided API key, client ID, and index ID.

Installation

You can install Metal Reader via pip:

pip install llama-index-readers-metal

To use Metal Reader, you must have a vector store first. Follow this to create a metal vector store, Setup Metal Vector Store

Usage

from llama_index.readers.metal import MetalReader

# Initialize MetalReader
reader = MetalReader(
    api_key="<Metal API Key>",
    client_id="<Metal Client ID>",
    index_id="<Metal Index ID>",
)

# Load data from Metal
documents = reader.load_data(
    limit=10,  # Number of results to return
    query_embedding=[0.1, 0.2, 0.3],  # Query embedding for search
    filters={"field": "value"},  # Filters to apply to the search
    separate_documents=True,  # Whether to return separate documents
)

This loader is designed to be used as a way to load data into LlamaIndex and/or subsequently used as a Tool in a LangChain Agent.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_metal-0.3.0.tar.gz (2.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_metal-0.3.0.tar.gz.

File metadata

  • Download URL: llama_index_readers_metal-0.3.0.tar.gz
  • Upload date:
  • Size: 2.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0

File hashes

Hashes for llama_index_readers_metal-0.3.0.tar.gz
Algorithm Hash digest
SHA256 8939a57315afeca0c77cb35149372ff35e12359abd5ccff4f385c9379152ff98
MD5 960ee2d3f9d95dbe2f7b89809ec2f3ec
BLAKE2b-256 d0a4dd26328e24ee781b36212c9d23e9a740809e70d7803d35b7dc2d12656515

See more details on using hashes here.

File details

Details for the file llama_index_readers_metal-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_metal-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 671e7fa8876815305ff3361dad22389ba5c25755b39a83059da2c603f33dfddb
MD5 a9071f2c5003a3203912eec140792a4c
BLAKE2b-256 75878f6f16f8b794ce7028374913a661d6ed57e6349ea112c697c82391166254

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page