Skip to main content

llama-index readers myscale integration

Project description

LlamaIndex Readers Integration: Myscale

Overview

MyScale Reader allows loading data from a MyScale backend. It constructs a query to retrieve documents based on a given query vector and additional search parameters.

Installation

You can install Myscale Reader via pip:

pip install llama-index-readers-myscale

Usage

from llama_index.readers.myscale import MyScaleReader

# Initialize MyScaleReader
reader = MyScaleReader(
    myscale_host="<MyScale Host>",  # MyScale host address
    username="<Username>",  # Username to login
    password="<Password>",  # Password to login
    database="<Database Name>",  # Database name (default: 'default')
    table="<Table Name>",  # Table name (default: 'llama_index')
    index_type="<Index Type>",  # Index type (default: "IVFLAT")
    metric="<Metric>",  # Metric to compute distance (default: 'cosine')
    batch_size=32,  # Batch size for inserting documents (default: 32)
    index_params=None,  # Index parameters for MyScale (default: None)
    search_params=None,  # Search parameters for MyScale query (default: None)
)

# Load data from MyScale
documents = reader.load_data(
    query_vector=[0.1, 0.2, 0.3],  # Query vector
    where_str="<Where Condition>",  # Where condition string (default: None)
    limit=10,  # Number of results to return (default: 10)
)

This loader is designed to be used as a way to load data into LlamaIndex and/or subsequently used as a Tool in a LangChain Agent.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_myscale-0.3.0.tar.gz (3.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_myscale-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_myscale-0.3.0.tar.gz
Algorithm Hash digest
SHA256 90903b0a77a4c268e624d3d1f84b9c2cdc486705f646caced85f2f07c2d33390
MD5 d724eae6f5f556a660820b366f886f97
BLAKE2b-256 8e0e6afcddf1ea15125584a41b60fefa597eb577c62b8f32641e2db90539732d

See more details on using hashes here.

File details

Details for the file llama_index_readers_myscale-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_myscale-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ac9529c444925e6125c32196d36776e829a7772084e4c82d7565d35790cd17b2
MD5 fa018cd59fb31a6f5d67532e9b38e01f
BLAKE2b-256 d146c2e99b848cb3fe7b4a5eb8fe83ca4e9da480f87d320de9c61381ccf70b80

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page