Skip to main content

llama-index readers pebblo integration

Project description

LlamaIndex Readers Integration: Pebblo

Pebblo Safe DocumentReader

Pebblo enables developers to safely load data and promote their Gen AI app to deployment without worrying about the organization’s compliance and security requirements. The project identifies semantic topics and entities found in the loaded data and summarizes them on the UI or a PDF report.

Pebblo has two components.

  1. Pebblo Safe DocumentReader for Llama
  2. Pebblo Daemon

This document describes how to augment your existing Llama DocumentReader with Pebblo Safe DocumentReader to get deep data visibility on the types of Topics and Entities ingested into the Gen-AI Llama application. For details on Pebblo Daemon see this pebblo daemon document.

Pebblo Safe DocumentReader enables safe data ingestion for Llama DocumentReader. This is done by wrapping the document reader call with Pebblo Safe DocumentReader

How to Pebblo enable Document Reading?

Assume a Llama RAG application snippet using CSVReader to read a CSV document for inference.

Here is the snippet of Document loading using CSVReader

from pathlib import Path
from llama_index.readers.file import CSVReader
reader = CSVReader()
documents = reader.load_data(file=Path('data/corp_sens_data.csv'))
print(documents)

The Pebblo SafeReader can be installed and enabled with few lines of code change to the above snippet.

Install PebbloSafeReader
pip install llama-index-readers-pebblo
Use PebbloSafeReader
from pathlib import Path
from llama_index.readers.pebblo import PebbloSafeReader
from llama_index.readers.file import CSVReader
reader = CSVReader()
pebblo_reader = PebbloSafeReader(reader, name="acme-corp-rag-1", # App name (Mandatory)
owner="Joe Smith", # Owner (Optional)
description="Support productivity RAG application")
documents = pebblo_reader.load_data(file=Path('data/corp_sens_data.csv'))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_pebblo-0.2.0.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_pebblo-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_pebblo-0.2.0.tar.gz
Algorithm Hash digest
SHA256 da4e6b62384074472357f3725a071b8bfa44189b5eefe49cf222574284a1dda0
MD5 dc64943a280c2b2f7d2a74897c4b78fb
BLAKE2b-256 7709113875c2c8bc7a1182e4a34857e6fe71271f1160247b5ba62080a78c6b14

See more details on using hashes here.

File details

Details for the file llama_index_readers_pebblo-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_pebblo-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 daeba42e89a62bafc032615c9cc084d31c671aa6c70bf2b3172407aec10b4b41
MD5 edfdc81dbaa8a2b494318f37b520b4b0
BLAKE2b-256 d38336ba55d7bbcbff152c00e282bd63acc52af96ad7da9cb1827257ed4ab36d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page