Skip to main content

llama-index readers pebblo integration

Project description

LlamaIndex Readers Integration: Pebblo

Pebblo Safe DocumentReader

Pebblo enables developers to safely load data and promote their Gen AI app to deployment without worrying about the organization’s compliance and security requirements. The project identifies semantic topics and entities found in the loaded data and summarizes them on the UI or a PDF report.

Pebblo has two components.

  1. Pebblo Safe DocumentReader for Llama
  2. Pebblo Daemon

This document describes how to augment your existing Llama DocumentReader with Pebblo Safe DocumentReader to get deep data visibility on the types of Topics and Entities ingested into the Gen-AI Llama application. For details on Pebblo Daemon see this pebblo daemon document.

Pebblo Safe DocumentReader enables safe data ingestion for Llama DocumentReader. This is done by wrapping the document reader call with Pebblo Safe DocumentReader

How to Pebblo enable Document Reading?

Assume a Llama RAG application snippet using CSVReader to read a CSV document for inference.

Here is the snippet of Document loading using CSVReader

from pathlib import Path
from llama_index.readers.file import CSVReader
reader = CSVReader()
documents = reader.load_data(file=Path('data/corp_sens_data.csv'))
print(documents)

The Pebblo SafeReader can be installed and enabled with few lines of code change to the above snippet.

Install PebbloSafeReader
pip install llama-index-readers-pebblo
Use PebbloSafeReader
from pathlib import Path
from llama_index.readers.pebblo import PebbloSafeReader
from llama_index.readers.file import CSVReader
reader = CSVReader()
pebblo_reader = PebbloSafeReader(reader, name="acme-corp-rag-1", # App name (Mandatory)
owner="Joe Smith", # Owner (Optional)
description="Support productivity RAG application")
documents = pebblo_reader.load_data(file=Path('data/corp_sens_data.csv'))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_pebblo-0.3.0.tar.gz (6.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_pebblo-0.3.0.tar.gz.

File metadata

  • Download URL: llama_index_readers_pebblo-0.3.0.tar.gz
  • Upload date:
  • Size: 6.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for llama_index_readers_pebblo-0.3.0.tar.gz
Algorithm Hash digest
SHA256 4cda990d7aa6a12e93383612880995ba4486ca1f447b1e0581f68b6eae434c2d
MD5 4e12c4fc9113c3879e5ab19f8c69e017
BLAKE2b-256 ef9244c1eb2b7ba3a43ecf5d4f716da1539287b9e22df161c025e0eea19dcf64

See more details on using hashes here.

File details

Details for the file llama_index_readers_pebblo-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_pebblo-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3a96a1fcdd4057eceb191fe52ff2ef0f64ca242577926717ddfbc836060f54a1
MD5 b06c2c25bdde3739e0c633c07c4c0e43
BLAKE2b-256 e44e7a3da4ad0e1a87d83a3057407c1b023b964e6d01d39076be60628be6e560

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page