Skip to main content

llama-index readers qdrant integration

Project description

LlamaIndex Readers Integration: Qdrant

Overview

The Qdrant Reader allows you to retrieve documents from existing Qdrant collections. Qdrant is a similarity search engine that helps you efficiently search and retrieve similar items from large datasets based on vector embeddings.

For more detailed information about Qdrant, visit Qdrant

Installation

You can install the Qdrant Reader via pip:

pip install llama-index-readers-qdrant

Usage

from llama_index.readers.qdrant import QdrantReader

# Initialize QdrantReader
reader = QdrantReader(
    location="<Qdrant Location>",
    url="<Qdrant URL>",
    port="<Port>",
    grpc_port="<gRPC Port>",
    prefer_grpc="<Prefer gRPC>",
    https="<Use HTTPS>",
    api_key="<API Key>",
    prefix="<URL Prefix>",
    timeout="<Timeout>",
    host="<Host>",
)

# Load data from Qdrant
documents = reader.load_data(
    collection_name="<Collection Name>",
    query_vector=[0.1, 0.2, 0.3],
    should_search_mapping={"text_field": "text"},
    must_search_mapping={"text_field": "text"},
    must_not_search_mapping={"text_field": "text"},
    rang_search_mapping={"text_field": {"gte": 0.1, "lte": 0.2}},
    limit=10,
)

This loader is designed to be used as a way to load data into LlamaIndex and/or subsequently used as a Tool in a LangChain Agent.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_qdrant-0.3.0.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_qdrant-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_qdrant-0.3.0.tar.gz
Algorithm Hash digest
SHA256 8a6570fc29d9797c96ef4cceadd130be1f5dc337740883cfc25de56af6fb9fd3
MD5 0d606ea4011810d000e262ed8c3e8ee5
BLAKE2b-256 bd401a573fc56299bbc86ae75bf2819b72729f56f8728ed5fcf372605e0d6aad

See more details on using hashes here.

File details

Details for the file llama_index_readers_qdrant-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_qdrant-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 db96f96705662701fa51de674be317be1146eac55ca5ffd32aa918fa7807d134
MD5 7fa08119d6771827e6c880c43d7730ed
BLAKE2b-256 b1607de54b348a1502a7121cb30208c46146c16dd35b2b5975fdfd350490a727

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page