Skip to main content

llama-index readers reddit integration

Project description

Reddit Reader

pip install llama-index-readers-reddit

For any subreddit(s) you're interested in, search for relevant posts using keyword(s) and load the resulting text in the post and and top-level comments into LLMs/ LangChains.

Get your Reddit credentials ready

  1. Visit Reddit App Preferences (https://www.reddit.com/prefs/apps) or https://old.reddit.com/prefs/apps/
  2. Scroll to the bottom and click "create another app..."
  3. Fill out the name, description, and redirect url for your app, then click "create app"
  4. Now you should be able to see the personal use script, secret, and name of your app. Store those as environment variables REDDIT_CLIENT_ID, REDDIT_CLIENT_SECRET, and REDDIT_USER_AGENT respectively.
  5. Additionally store the environment variables REDDIT_USERNAME and REDDIT_PASSWORD, which correspond to the credentials for your Reddit account.

Usage

LlamaIndex

from llama_index.core import VectorStoreIndex, download_loader

from llama_index.readers.reddit import RedditReader

subreddits = ["MachineLearning"]
search_keys = ["PyTorch", "deploy"]
post_limit = 10

loader = RedditReader()
documents = loader.load_data(
    subreddits=subreddits, search_keys=search_keys, post_limit=post_limit
)
index = VectorStoreIndex.from_documents(documents)

index.query("What are the pain points of PyTorch users?")

LangChain

from llama_index.core import VectorStoreIndex, download_loader

from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI
from langchain.chains.conversation.memory import ConversationBufferMemory

from llama_index.readers.reddit import RedditReader

subreddits = ["MachineLearning"]
search_keys = ["PyTorch", "deploy"]
post_limit = 10

loader = RedditReader()
documents = loader.load_data(
    subreddits=subreddits, search_keys=search_keys, post_limit=post_limit
)
index = VectorStoreIndex.from_documents(documents)

tools = [
    Tool(
        name="Reddit Index",
        func=lambda q: index.query(q),
        description=f"Useful when you want to read relevant posts and top-level comments in subreddits.",
    ),
]
llm = OpenAI(temperature=0)
memory = ConversationBufferMemory(memory_key="chat_history")
agent_chain = initialize_agent(
    tools, llm, agent="zero-shot-react-description", memory=memory
)

output = agent_chain.run(input="What are the pain points of PyTorch users?")
print(output)

This loader is designed to be used as a way to load data into GPT Index.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_reddit-0.3.0.tar.gz (3.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_reddit-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_reddit-0.3.0.tar.gz
Algorithm Hash digest
SHA256 aabd7a6c042d5752967ad7f081c141c07c61c3c0603229b2681e9b289f6c64a8
MD5 451269a6273286ca4e799517f34a0940
BLAKE2b-256 f2a4d894de911e8cc787820e2cdf0ba9ee04b6c0d556b6c60483edaebe0f5c70

See more details on using hashes here.

File details

Details for the file llama_index_readers_reddit-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_reddit-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a244370c22dc3e6e1ad2a1fee715c39d05c3de9780adeb2a6df297f24c7a8dea
MD5 20694e36eec3c2de3b0f53d60ff96b2a
BLAKE2b-256 a0e8962091abdbbf3751a59c10864a4ebf60a6851310fd58f152068d8482673d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page