Skip to main content

llama-index readers reddit integration

Project description

Reddit Reader

For any subreddit(s) you're interested in, search for relevant posts using keyword(s) and load the resulting text in the post and and top-level comments into LLMs/ LangChains.

Get your Reddit credentials ready

  1. Visit Reddit App Preferences (https://www.reddit.com/prefs/apps) or https://old.reddit.com/prefs/apps/
  2. Scroll to the bottom and click "create another app..."
  3. Fill out the name, description, and redirect url for your app, then click "create app"
  4. Now you should be able to see the personal use script, secret, and name of your app. Store those as environment variables REDDIT_CLIENT_ID, REDDIT_CLIENT_SECRET, and REDDIT_USER_AGENT respecitvely.
  5. Additionally store the environment variables REDDIT_USERNAME and REDDIT_PASSWORD, which correspond to the credentials for your Reddit account.

Usage

LlamaIndex

from llama_index import VectorStoreIndex, download_loader

RedditReader = download_loader("RedditReader")

subreddits = ["MachineLearning"]
search_keys = ["PyTorch", "deploy"]
post_limit = 10

loader = RedditReader()
documents = loader.load_data(
    subreddits=subreddits, search_keys=search_keys, post_limit=post_limit
)
index = VectorStoreIndex.from_documents(documents)

index.query("What are the pain points of PyTorch users?")

LangChain

from llama_index import VectorStoreIndex, download_loader

from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI
from langchain.chains.conversation.memory import ConversationBufferMemory

RedditReader = download_loader("RedditReader")

subreddits = ["MachineLearning"]
search_keys = ["PyTorch", "deploy"]
post_limit = 10

loader = RedditReader()
documents = loader.load_data(
    subreddits=subreddits, search_keys=search_keys, post_limit=post_limit
)
index = VectorStoreIndex.from_documents(documents)

tools = [
    Tool(
        name="Reddit Index",
        func=lambda q: index.query(q),
        description=f"Useful when you want to read relevant posts and top-level comments in subreddits.",
    ),
]
llm = OpenAI(temperature=0)
memory = ConversationBufferMemory(memory_key="chat_history")
agent_chain = initialize_agent(
    tools, llm, agent="zero-shot-react-description", memory=memory
)

output = agent_chain.run(input="What are the pain points of PyTorch users?")
print(output)

This loader is designed to be used as a way to load data into GPT Index and/or subsequently used as a Tool in a LangChain Agent. See here for examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_reddit-0.1.1.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_reddit-0.1.1.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_reddit-0.1.1.tar.gz
Algorithm Hash digest
SHA256 247936e08244a44ed63fe14e7a6a78d06c7e776952ffda7ec92584fb47a4ce9d
MD5 0c6a025ef6a80a4a5bb62700b8c9bf79
BLAKE2b-256 852d604b6e03831f606147c67cd04ff3091a6847555f6f116321970476e712a2

See more details on using hashes here.

File details

Details for the file llama_index_readers_reddit-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_reddit-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f4e29386c4bddc4170280c910e4dae0caddadd69c4b25657e800f0498db00b73
MD5 fca39b0f1fab28f1a6cd1f97dfdbefec
BLAKE2b-256 e48952fcb3b14a3a49e5e789988fa42a3a3712a3eac8e8aacb75bc2b02917c43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page