Skip to main content

llama-index readers sec_filings integration

Project description

SEC DATA DOWNLOADER

pip install llama-index-readers-sec-filings

Please checkout this repo that I am building on SEC Question Answering Agent SEC-QA

This repository downloads all the texts from SEC documents (10-K and 10-Q). Currently, it is not supporting documents that are amended, but that will be added in the near futures.

Install the required dependencies

python install -r requirements.txt

The SEC Downloader expects 5 attributes

  • tickers: It is a list of valid tickers
  • amount: Number of documents that you want to download
  • filing_type: 10-K or 10-Q filing type
  • num_workers: It is for multithreading and multiprocessing. We have multi-threading at the ticker level and multi-processing at the year level for a given ticker
  • include_amends: To include amendments or not.

Usage

from llama_index.readers.sec_filings import SECFilingsLoader

loader = SECFilingsLoader(tickers=["TSLA"], amount=3, filing_type="10-K")
loader.load_data()

It will download the data in the following directories and sub-directories

- AAPL
  - 2018
  - 10-K.json
  - 2019
  - 10-K.json
  - 2020
  - 10-K.json
  - 2021
  - 10-K.json
  - 10-Q_12.json
  - 2022
  - 10-K.json
  - 10-Q_03.json
  - 10-Q_06.json
  - 10-Q_12.json
  - 2023
  - 10-Q_04.json
- GOOGL
  - 2018
  - 10-K.json
  - 2019
  - 10-K.json
  - 2020
  - 10-K.json
  - 2021
  - 10-K.json
  - 10-Q_09.json
  - 2022
  - 10-K.json
  - 10-Q_03.json
  - 10-Q_06.json
  - 10-Q_09.json
  - 2023
  - 10-Q_03.json
- TSLA
  - 2018
  - 10-K.json
  - 2019
  - 10-K.json
  - 2020
  - 10-K.json
  - 2021
  - 10-K.json
  - 10-KA.json
  - 10-Q_09.json
  - 2022
  - 10-K.json
  - 10-Q_03.json
  - 10-Q_06.json
  - 10-Q_09.json
  - 2023
  - 10-Q_03.json

Here for each ticker we have separate folders with 10-K data inside respective years and 10-Q data is saved in the respective year along with the month. 10-Q_03.json means March data of 10-Q document. Also, the amended documents are stored in their respective year

EXAMPLES

This loader is can be used with both Langchain and LlamaIndex.

LlamaIndex

from llama_index.core import VectorStoreIndex, download_loader
from llama_index.core import SimpleDirectoryReader

from llama_index.readers.sec_filings import SECFilingsLoader

loader = SECFilingsLoader(tickers=["TSLA"], amount=3, filing_type="10-K")
loader.load_data()

documents = SimpleDirectoryReader("data\TSLA\2022").load_data()
index = VectorStoreIndex.from_documents(documents)
index.query("What are the risk factors of Tesla for the year 2022?")

Langchain

from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import DirectoryLoader
from langchain.indexes import VectorstoreIndexCreator

from llama_index.readers.sec_filings import SECFilingsLoader

loader = SECFilingsLoader(tickers=["TSLA"], amount=3, filing_type="10-K")
loader.load_data()

dir_loader = DirectoryLoader("data\TSLA\2022")

index = VectorstoreIndexCreator().from_loaders([dir_loader])
retriever = index.vectorstore.as_retriever()
qa = RetrievalQA.from_chain_type(
    llm=OpenAI(), chain_type="stuff", retriever=retriever
)

query = "What are the risk factors of Tesla for the year 2022?"
qa.run(query)

REFERENCES

  1. Unstructured SEC Filings API: repo link
  2. SEC Edgar Downloader: repo link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_sec_filings-0.3.0.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_sec_filings-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_sec_filings-0.3.0.tar.gz
Algorithm Hash digest
SHA256 cc162a48a27e4fe39eff08fc58e5cb6f31d18b111bce509c32bc0eda010bf24e
MD5 07fc3dbeba572f1c3ddca23d79966612
BLAKE2b-256 359af49604c602bdb1db29dc3392f9b459340247d0b3130df26719c20c88db8c

See more details on using hashes here.

File details

Details for the file llama_index_readers_sec_filings-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_sec_filings-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 09193e8b3de2a92e66de93efc8655b6fe75cdc95fe27d545dbbbb1f7a87b9e1e
MD5 3f08c054d16c504281a5da050fb52ba7
BLAKE2b-256 a423d7342c425e0ac316f5645741f23215a69a25529702559beafd568e9a09df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page