Skip to main content

llama-index readers txtai integration

Project description

LlamaIndex Readers Integration: txtai

Overview

The txtai Reader retrieves documents through an existing in-memory txtai index. These documents can then be used in downstream LlamaIndex data structures. If you wish to use txtai itself as an index to organize documents, insert documents, and perform queries on them, please use VectorStoreIndex with TxtaiVectorStore.

Installation

You can install the txtai Reader via pip:

pip install llama-index-readers-txtai

Usage

from llama_index.readers.txtai import TxtaiReader

# Initialize TxtaiReader with an existing txtai index
reader = TxtaiReader(index="<txtai Index object>")

# Load data from txtai index
documents = reader.load_data(
    query="<Query Vector>",
    id_to_text_map={"<ID>": "<Text>"},
    k=4,
    separate_documents=True,
)

This loader is designed to be used as a way to load data into LlamaIndex.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_txtai-0.2.0.tar.gz (2.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_txtai-0.2.0.tar.gz.

File metadata

  • Download URL: llama_index_readers_txtai-0.2.0.tar.gz
  • Upload date:
  • Size: 2.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.13 Darwin/23.6.0

File hashes

Hashes for llama_index_readers_txtai-0.2.0.tar.gz
Algorithm Hash digest
SHA256 8da0a0dd378c901287b59471a5ae4aad06feb863fde6a3759d6b6b134f0eabdf
MD5 a21ab847cbfd829952437c99126db7f5
BLAKE2b-256 00598276cb2c3b217adae5b81fe9a249790287f5eb6ff18a1c2e2cfa9697c5e9

See more details on using hashes here.

File details

Details for the file llama_index_readers_txtai-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_txtai-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2b60f3f5f842b8c3126e7c2ed63170097040f080c2b22befcd65fb1601228061
MD5 c9460a2151330a6be6314c0bb5fa6c52
BLAKE2b-256 5c74655a057efe5d0ebd407e452337ec714b6a9866d1b5c7b1c40b5f186eac36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page