Skip to main content

llama-index readers wordlift integration

Project description

WordLift Reader

pip install llama-index-readers-wordlift

The WordLift GraphQL Reader is a connector to fetch and transform data from a WordLift Knowledge Graph using your the WordLift Key. The connector provides a convenient way to load data from WordLift using a GraphQL query and transform it into a list of documents for further processing.

Usage

To use the WordLift GraphQL Reader, follow the steps below:

  1. Set up the necessary configuration options, such as the API endpoint, headers, query, fields, and configuration options (make sure you have with you the Wordlift Key).
  2. Create an instance of the WordLiftLoader class, passing in the configuration options.
  3. Use the load_data method to fetch and transform the data.
  4. Process the loaded documents as needed.

Here's an example of how to use the WordLift GraphQL Reader:

import json
from llama_index.core import VectorStoreIndex
from llama_index.core import Document
from langchain.llms import OpenAI
from llama_index.readers.wordlift import WordLiftLoader

# Set up the necessary configuration options
endpoint = "https://api.wordlift.io/graphql"
headers = {
    "Authorization": "<YOUR_WORDLIFT_KEY>",
    "Content-Type": "application/json",
}

query = """
# Your GraphQL query here
"""
fields = "<YOUR_FIELDS>"
config_options = {
    "text_fields": ["<YOUR_TEXT_FIELDS>"],
    "metadata_fields": ["<YOUR_METADATA_FIELDS>"],
}
# Create an instance of the WordLiftLoader
reader = WordLiftLoader(endpoint, headers, query, fields, config_options)

# Load the data
documents = reader.load_data()

# Convert the documents
converted_doc = []
for doc in documents:
    converted_doc_id = json.dumps(doc.doc_id)
    converted_doc.append(
        Document(
            text=doc.text,
            doc_id=converted_doc_id,
            embedding=doc.embedding,
            doc_hash=doc.doc_hash,
            extra_info=doc.extra_info,
        )
    )

# Create the index and query engine
index = VectorStoreIndex.from_documents(converted_doc)
query_engine = index.as_query_engine()

# Perform a query
result = query_engine.query("<YOUR_QUERY>")

# Process the result as needed
logging.info("Result: %s", result)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_readers_wordlift-0.2.0.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_readers_wordlift-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_readers_wordlift-0.2.0.tar.gz
Algorithm Hash digest
SHA256 396b371e3e3c9791996e9f8fe4c5cc67cc0ba691c09546566602967d48fbfbfe
MD5 1f3642b3acba6ccce94f02b79ed65ede
BLAKE2b-256 68ab4dda6b14a972684329de06dcff2c9a8c8dc7873a548e1d0f0f5a0af2148f

See more details on using hashes here.

File details

Details for the file llama_index_readers_wordlift-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_readers_wordlift-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1140b30609fd10f1c5cae2a2e4fe72e489d0f563ec998e2b1e86e3d6cd3d61ad
MD5 e6867d60254bd0dc59ccd5f822f50fab
BLAKE2b-256 d6e94196f2fdb32d1242fab573f8c02646adb6009d571a8a9709258119bbc1e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page