Skip to main content

llama-index retrievers bedrock integration

Project description

LlamaIndex Retrievers Integration: Bedrock

Knowledge Bases

Knowledge bases for Amazon Bedrock is an Amazon Web Services (AWS) offering which lets you quickly build RAG applications by using your private data to customize FM response.

Implementing RAG requires organizations to perform several cumbersome steps to convert data into embeddings (vectors), store the embeddings in a specialized vector database, and build custom integrations into the database to search and retrieve text relevant to the user’s query. This can be time-consuming and inefficient.

With Knowledge Bases for Amazon Bedrock, simply point to the location of your data in Amazon S3, and Knowledge Bases for Amazon Bedrock takes care of the entire ingestion workflow into your vector database. If you do not have an existing vector database, Amazon Bedrock creates an Amazon OpenSearch Serverless vector store for you.

Knowledge base can be configured through AWS Console or by using AWS SDKs.

Installation

pip install llama-index-retrievers-bedrock

Usage

from llama_index.retrievers.bedrock import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="<knowledge-base-id>",
    retrieval_config={
        "vectorSearchConfiguration": {
            "numberOfResults": 4,
            "overrideSearchType": "HYBRID",
            "filter": {"equals": {"key": "tag", "value": "space"}},
        }
    },
)

query = "How big is Milky Way as compared to the entire universe?"
retrieved_results = retriever.retrieve(query)

# Prints the first retrieved result
print(retrieved_results[0].get_content())

Notebook

Explore the retriever using Notebook present at: https://docs.llamaindex.ai/en/latest/examples/retrievers/bedrock_retriever/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_retrievers_bedrock-0.3.0.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_retrievers_bedrock-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_retrievers_bedrock-0.3.0.tar.gz
Algorithm Hash digest
SHA256 ec91be211d64a7f60ba5fc328721d42b6eb23f6f6657f96988be943e1946a4e4
MD5 81076e150cc338d282f911f4f509c030
BLAKE2b-256 317fa64f75db12c0a79976736042cfa39299e3c824900c288d754b193a21caaf

See more details on using hashes here.

File details

Details for the file llama_index_retrievers_bedrock-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_retrievers_bedrock-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9ae91c21ae52189bb263853893325fc06d5bb5a182d82b5cad94446fa4e63e42
MD5 490c341ebbae5fb9f7b47616948319ff
BLAKE2b-256 5dfd438f1f5fce86c2e4e4ec367f3ab65c9a5d50debd21a499ef6676a910ef72

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page