Skip to main content

llama-index docstore Azure integration

Project description

LlamaIndex Docstore Integration: Azure Table Storage

AzureDocumentStore allows you to use any compatible Azure Table Storage or CosmosDB as a document store for LlamaIndex.

Installation

Before using the AzureDocumentStore, ensure you have Python installed and then proceed to install the required packages:

pip install llama-index-storage-docstore-azure
pip install azure-data-tables
pip install azure-identity  # Only needed for AAD token authentication

Initializing AzureDocumentStore

AzureDocumentStore can be initialized in several ways depending on the authentication method and the Azure service (Table Storage or Cosmos DB) you are using:

1. Using a Connection String

from llama_index.storage.docstore.azure import AzureDocumentStore
from llama_index.storage.kvstore.azure.base import ServiceMode

store = AzureDocumentStore.from_connection_string(
    connection_string="your_connection_string_here",
    namespace="your_namespace",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

2. Using Account Name and Key

store = AzureDocumentStore.from_account_and_key(
    account_name="your_account_name",
    account_key="your_account_key",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

3. Using SAS Token

store = AzureDocumentStore.from_sas_token(
    endpoint="your_endpoint",
    sas_token="your_sas_token",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

4. Using Azure Active Directory (AAD) Token

store = AzureDocumentStore.from_aad_token(
    endpoint="your_endpoint",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

End-to-end example:

from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex

reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
nodes = SentenceSplitter().get_nodes_from_documents(documents)

storage_context = StorageContext.from_defaults(
    docstore=AzureDocumentStore.from_account_and_key(
        "your_account_name",
        "your_account_key",
        service_mode=ServiceMode.STORAGE,
    ),
)

vector_index = VectorStoreIndex(nodes, storage_context=storage_context)

storage_context.docstore.add_documents(nodes)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_storage_docstore_azure-0.2.1.tar.gz.

File metadata

File hashes

Hashes for llama_index_storage_docstore_azure-0.2.1.tar.gz
Algorithm Hash digest
SHA256 349a6440c6341ecbce88623fa2afd0c5284c3cad1a2d48e71a61388f197760d8
MD5 62a29aa402cb4e9831cfa89f5d13d322
BLAKE2b-256 3897aa21f1632c949093da83bce8131c5d5191857ef9682e7fe23edc7c37de49

See more details on using hashes here.

File details

Details for the file llama_index_storage_docstore_azure-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_storage_docstore_azure-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b6ed09c3874de651204f84f67ec17ecb22c1053318732a40c1dede9b91afdccd
MD5 35d7e51f1068d4550feb15f0d6da1215
BLAKE2b-256 0a8be11edacb0d505b47175aa32066361c827fdd51be6ab98f33e98b9c32ac2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page