Skip to main content

llama-index docstore Azure integration

Project description

LlamaIndex Docstore Integration: Azure Table Storage

AzureDocumentStore allows you to use any compatible Azure Table Storage or CosmosDB as a document store for LlamaIndex.

Installation

Before using the AzureDocumentStore, ensure you have Python installed and then proceed to install the required packages:

pip install llama-index-storage-docstore-azure
pip install azure-data-tables
pip install azure-identity  # Only needed for AAD token authentication

Initializing AzureDocumentStore

AzureDocumentStore can be initialized in several ways depending on the authentication method and the Azure service (Table Storage or Cosmos DB) you are using:

1. Using a Connection String

from llama_index.storage.docstore.azure import AzureDocumentStore
from llama_index.storage.kvstore.azure.base import ServiceMode

store = AzureDocumentStore.from_connection_string(
    connection_string="your_connection_string_here",
    namespace="your_namespace",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

2. Using Account Name and Key

store = AzureDocumentStore.from_account_and_key(
    account_name="your_account_name",
    account_key="your_account_key",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

3. Using SAS Token

store = AzureDocumentStore.from_sas_token(
    endpoint="your_endpoint",
    sas_token="your_sas_token",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

4. Using Azure Active Directory (AAD) Token

store = AzureDocumentStore.from_aad_token(
    endpoint="your_endpoint",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

End-to-end example:

from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex

reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
nodes = SentenceSplitter().get_nodes_from_documents(documents)

storage_context = StorageContext.from_defaults(
    docstore=AzureDocumentStore.from_account_and_key(
        "your_account_name",
        "your_account_key",
        service_mode=ServiceMode.STORAGE,
    ),
)

vector_index = VectorStoreIndex(nodes, storage_context=storage_context)

storage_context.docstore.add_documents(nodes)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_storage_docstore_azure-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_storage_docstore_azure-0.3.0.tar.gz
Algorithm Hash digest
SHA256 469bccee7afe6a86f200284544773c8fd7d0425e7ef3951f2698053577401290
MD5 3de7c37140c63ebeb1e0f8642a579e8d
BLAKE2b-256 f7759e284818951eec9d6bc2447fbd6b83b09371bd180fcbdb4a7f7dd292a282

See more details on using hashes here.

File details

Details for the file llama_index_storage_docstore_azure-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_storage_docstore_azure-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 efbb0a2f847c03754cf25cfbf911944814bfeb9b3076a166db6d0b9fb8b7510a
MD5 8d1cde87fed7ac29dd113b1d27d27d73
BLAKE2b-256 6e3808a7d3f25d8bbdd29644fceaf79743902f5716d4634dcba8a9145b2ac1e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page