Skip to main content

llama-index index_store azure integration

Project description

LlamaIndex Index_Store Integration: Azure Table Storage

AzureIndexStore utilizes Azure Table Storage and Cosmos DB to provide an index storage solution for indexing documents or data.

Installation

Before using the AzureIndexStore, ensure you have Python installed and then proceed to install the required packages:

pip install llama-index-storage-index-store-azure
pip install azure-data-tables
pip install azure-identity  # Only needed for AAD token authentication

Initializing AzureIndexStore

AzureIndexStore can be initialized in several ways depending on the authentication method and the Azure service (Table Storage or Cosmos DB) you are using:

1. Using a Connection String

from llama_index.storage.index_store.azure import AzureIndexStore
from llama_index.storage.kvstore.azure.base import ServiceMode

store = AzureIndexStore.from_connection_string(
    connection_string="your_connection_string_here",
    namespace="your_namespace",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

2. Using Account Name and Key

store = AzureIndexStore.from_account_and_key(
    account_name="your_account_name",
    account_key="your_account_key",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

3. Using SAS Token

store = AzureIndexStore.from_sas_token(
    endpoint="your_endpoint",
    sas_token="your_sas_token",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

4. Using Azure Active Directory (AAD) Token

store = AzureIndexStore.from_aad_token(
    endpoint="your_endpoint",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

End-to-end example:

from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import VectorStoreIndex

reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
nodes = SentenceSplitter().get_nodes_from_documents(documents)

storage_context = StorageContext.from_defaults(
    index_store=AzureIndexStore.from_account_and_key(
        "your_account_name",
        "your_account_key",
        service_mode=ServiceMode.STORAGE,
    ),
)

storage_context.docstore.add_documents(nodes)

keyword_table_index = SimpleKeywordTableIndex(
    nodes, storage_context=storage_context
)

vector_index = VectorStoreIndex(nodes, storage_context=storage_context)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_storage_index_store_azure-0.4.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_storage_index_store_azure-0.4.0.tar.gz
Algorithm Hash digest
SHA256 c5a43a8f371348b3a2702724351e11e95d7a0c500666d2e3fae182d7e5b27db9
MD5 d093d862c6ebbf1ea40c83a490430d2a
BLAKE2b-256 be5e2c78e7c4648590d8bef285659ccbd2a8b46d730cfa30b59bc73f5c319230

See more details on using hashes here.

File details

Details for the file llama_index_storage_index_store_azure-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_storage_index_store_azure-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4a7db3286bbed69203eb581fc462e4279527a9988d10b26398079a1ceb6143c2
MD5 2692fa6afd9866fec4fafc32411e10fb
BLAKE2b-256 23d28e91b9fdff02532b8474676ccb6a930bdc477dc2d05b5483966cccbdc7bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page