Skip to main content

llama-index index_store azure integration

Project description

LlamaIndex Index_Store Integration: Azure Table Storage

AzureIndexStore utilizes Azure Table Storage and Cosmos DB to provide an index storage solution for indexing documents or data.

Installation

Before using the AzureIndexStore, ensure you have Python installed and then proceed to install the required packages:

pip install llama-index-storage-index-store-azure
pip install azure-data-tables
pip install azure-identity  # Only needed for AAD token authentication

Initializing AzureIndexStore

AzureIndexStore can be initialized in several ways depending on the authentication method and the Azure service (Table Storage or Cosmos DB) you are using:

1. Using a Connection String

from llama_index.storage.index_store.azure import AzureIndexStore
from llama_index.storage.kvstore.azure.base import ServiceMode

store = AzureIndexStore.from_connection_string(
    connection_string="your_connection_string_here",
    namespace="your_namespace",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

2. Using Account Name and Key

store = AzureIndexStore.from_account_and_key(
    account_name="your_account_name",
    account_key="your_account_key",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

3. Using SAS Token

store = AzureIndexStore.from_sas_token(
    endpoint="your_endpoint",
    sas_token="your_sas_token",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

4. Using Azure Active Directory (AAD) Token

store = AzureIndexStore.from_aad_token(
    endpoint="your_endpoint",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

End-to-end example:

from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import VectorStoreIndex

reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
nodes = SentenceSplitter().get_nodes_from_documents(documents)

storage_context = StorageContext.from_defaults(
    index_store=AzureIndexStore.from_account_and_key(
        "your_account_name",
        "your_account_key",
        service_mode=ServiceMode.STORAGE,
    ),
)

storage_context.docstore.add_documents(nodes)

keyword_table_index = SimpleKeywordTableIndex(
    nodes, storage_context=storage_context
)

vector_index = VectorStoreIndex(nodes, storage_context=storage_context)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_storage_index_store_azure-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_storage_index_store_azure-0.2.0.tar.gz
Algorithm Hash digest
SHA256 01b99f7fb5dc035e106e0c331d0514f23a9951c5248dff8b8f03d6df1d0249e2
MD5 259d63a280284cbbe6648e812021f258
BLAKE2b-256 3d6854b414cb1d288acaca6f01cf53b6683b9db072989522334313ad23e831b1

See more details on using hashes here.

File details

Details for the file llama_index_storage_index_store_azure-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_storage_index_store_azure-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ccc93c56e888106e2034d6018177b8f106eead3c2fb1b2694693f83f7d237a5a
MD5 3f96e672bbbed31bd7407e0f6181d8bc
BLAKE2b-256 6630dc2d3f80e62d6f9b90cc2ba22b55fe08e51c19cfcafd3809b23e55541cc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page